論文の概要: Controllable Neural Symbolic Regression
- arxiv url: http://arxiv.org/abs/2304.10336v1
- Date: Thu, 20 Apr 2023 14:20:48 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-21 12:53:21.751867
- Title: Controllable Neural Symbolic Regression
- Title(参考訳): 制御可能な神経シンボリックレグレッション
- Authors: Tommaso Bendinelli, Luca Biggio, Pierre-Alexandre Kamienny
- Abstract要約: 記号回帰では、数学的記号の最小使用量で実験データに適合する解析式を見つけることが目的である。
仮説付きニューラルシンボリック回帰(NSRwH)と呼ばれる新しいニューラルシンボリック回帰法を提案する。
実験により,提案した条件付き深層学習モデルは,精度で非条件付き学習モデルよりも優れていることが示された。
- 参考スコア(独自算出の注目度): 10.128755371375572
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In symbolic regression, the goal is to find an analytical expression that
accurately fits experimental data with the minimal use of mathematical symbols
such as operators, variables, and constants. However, the combinatorial space
of possible expressions can make it challenging for traditional evolutionary
algorithms to find the correct expression in a reasonable amount of time. To
address this issue, Neural Symbolic Regression (NSR) algorithms have been
developed that can quickly identify patterns in the data and generate
analytical expressions. However, these methods, in their current form, lack the
capability to incorporate user-defined prior knowledge, which is often required
in natural sciences and engineering fields. To overcome this limitation, we
propose a novel neural symbolic regression method, named Neural Symbolic
Regression with Hypothesis (NSRwH) that enables the explicit incorporation of
assumptions about the expected structure of the ground-truth expression into
the prediction process. Our experiments demonstrate that the proposed
conditioned deep learning model outperforms its unconditioned counterparts in
terms of accuracy while also providing control over the predicted expression
structure.
- Abstract(参考訳): 記号回帰において、目標は、演算子、変数、定数などの数学的記号の最小使用で実験データに正確に適合する解析式を見つけることである。
しかし、可能な表現の組合せ空間は、従来の進化的アルゴリズムが妥当な時間内に正しい表現を見つけるのを難しくする可能性がある。
この問題に対処するために、データのパターンを素早く識別し、分析式を生成するニューラルシンボリック回帰(NSR)アルゴリズムが開発された。
しかし、これらの手法は、現在の形式では、自然科学や工学の分野でしばしば必要とされる、ユーザ定義の事前知識を組み込む能力に欠ける。
この制限を克服するために,ニューラルシンボリック回帰仮説 (Neural Symbolic Regression with hypothesis, NSRwH) と呼ばれる新しいニューラルシンボリック回帰法を提案する。
提案する条件付き深層学習モデルは, 予測された表現構造を制御しつつ, 精度の面で非条件付き学習モデルよりも優れていることを示す。
関連論文リスト
- Latent Variable Sequence Identification for Cognitive Models with Neural Bayes Estimation [7.7227297059345466]
本稿では,ニューラルベイズ推定を拡張して,実験データと対象変数空間との直接マッピングを学習する手法を提案する。
我々の研究は、リカレントニューラルネットワークとシミュレーションベースの推論を組み合わせることで、潜在変数配列を特定することで、研究者がより広範な認知モデルにアクセスできるようになることを強調している。
論文 参考訳(メタデータ) (2024-06-20T21:13:39Z) - Function-Space Regularization in Neural Networks: A Probabilistic
Perspective [51.133793272222874]
所望の予測関数に関する情報をニューラルネットワークトレーニングに明示的にエンコードできる、モチベーションの高い正規化手法を導出できることが示される。
本手法の有効性を実証的に評価し,提案手法がほぼ完全なセマンティックシフト検出と高度に校正された予測不確実性推定に繋がることを示す。
論文 参考訳(メタデータ) (2023-12-28T17:50:56Z) - Discovering Interpretable Physical Models using Symbolic Regression and
Discrete Exterior Calculus [55.2480439325792]
本稿では,記号回帰(SR)と離散指数計算(DEC)を組み合わせて物理モデルの自動発見を行うフレームワークを提案する。
DECは、SRの物理問題への最先端の応用を越えている、場の理論の離散的な類似に対して、ビルディングブロックを提供する。
実験データから連続体物理の3つのモデルを再発見し,本手法の有効性を実証する。
論文 参考訳(メタデータ) (2023-10-10T13:23:05Z) - On the Trade-off Between Efficiency and Precision of Neural Abstraction [62.046646433536104]
ニューラル抽象化は、最近、複雑な非線形力学モデルの形式近似として導入されている。
我々は形式的帰納的合成法を用いて、これらのセマンティクスを用いた動的モデルをもたらすニューラル抽象化を生成する。
論文 参考訳(メタデータ) (2023-07-28T13:22:32Z) - Adaptive Conditional Quantile Neural Processes [9.066817971329899]
条件量子ニューラルプロセス(CQNP)は、ニューラルプロセスファミリーの新たなメンバーである。
本稿では,情報量推定に焦点をあてることから学習する量子レグレッションの拡張を提案する。
実データと合成データセットによる実験は、予測性能を大幅に改善した。
論文 参考訳(メタデータ) (2023-05-30T06:19:19Z) - Automated Learning of Interpretable Models with Quantified Uncertainty [0.0]
我々は遺伝子プログラミングに基づくシンボリックレグレッション(GPSR)の新しい枠組みを導入する。
GPSRはモデルエビデンスを用いて、進化の選択段階における置換確率を定式化する。
従来のGPSR実装と比較して、解釈可能性の向上、ノイズに対する堅牢性の向上、オーバーフィッティングの低減が示されている。
論文 参考訳(メタデータ) (2022-04-12T19:56:42Z) - Neural-Network-Directed Genetic Programmer for Discovery of Governing
Equations [0.0]
faiGPは、文法にエンコードされた関数代数の性質を利用するように設計されている。
我々は, トランスクリプトームの研究から適応した多様性指標を含む, 各種正則化剤の影響を定量化する。
論文 参考訳(メタデータ) (2022-03-15T21:28:05Z) - Data-driven emergence of convolutional structure in neural networks [83.4920717252233]
識別タスクを解くニューラルネットワークが、入力から直接畳み込み構造を学習できることを示す。
データモデルを慎重に設計することにより、このパターンの出現は、入力の非ガウス的、高次局所構造によって引き起こされることを示す。
論文 参考訳(メタデータ) (2022-02-01T17:11:13Z) - Gradient Starvation: A Learning Proclivity in Neural Networks [97.02382916372594]
グラディエント・スターベーションは、タスクに関連する機能のサブセットのみをキャプチャすることで、クロスエントロピー損失を最小化するときに発生する。
この研究は、ニューラルネットワークにおけるそのような特徴不均衡の出現に関する理論的説明を提供する。
論文 参考訳(メタデータ) (2020-11-18T18:52:08Z) - Learning identifiable and interpretable latent models of
high-dimensional neural activity using pi-VAE [10.529943544385585]
本稿では,潜在モデルと従来のニューラルエンコーディングモデルから重要な要素を統合する手法を提案する。
我々の手法であるpi-VAEは、同定可能な変分自動エンコーダの最近の進歩にインスパイアされている。
人工データを用いてpi-VAEを検証し,それをラット海馬およびマカク運動野の神経生理学的データセットの解析に応用した。
論文 参考訳(メタデータ) (2020-11-09T22:00:38Z) - Relaxing the Constraints on Predictive Coding Models [62.997667081978825]
予測符号化(英: Predictive coding)は、脳が行う主計算が予測誤差の最小化であるとする皮質機能の影響力のある理論である。
アルゴリズムの標準的な実装は、同じ前方と後方の重み、後方の非線形微分、1-1エラーユニット接続といった、潜在的に神経的に予測できない特徴を含んでいる。
本稿では,これらの特徴はアルゴリズムに不可欠なものではなく,Hebbianの更新ルールを用いてパラメータセットを直接あるいは学習することで,学習性能に悪影響を及ぼすことなく除去可能であることを示す。
論文 参考訳(メタデータ) (2020-10-02T15:21:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。