論文の概要: Interpretable and Robust AI in EEG Systems: A Survey
- arxiv url: http://arxiv.org/abs/2304.10755v3
- Date: Sun, 25 Aug 2024 04:41:36 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-28 01:26:59.107658
- Title: Interpretable and Robust AI in EEG Systems: A Survey
- Title(参考訳): EEGシステムにおける解釈AIとロバストAI:サーベイ
- Authors: Xinliang Zhou, Chenyu Liu, Zhongruo Wang, Liming Zhai, Ziyu Jia, Cuntai Guan, Yang Liu,
- Abstract要約: 本稿では, 逆伝播, 摂動, 本質的に解釈可能な方法の3つのタイプに分類し, 解釈可能性の分類法を提案する。
我々は、頑健性メカニズムをノイズとアーティファクト、人間の多様性、データ取得不安定性、敵攻撃の4つのクラスに分類する。
- 参考スコア(独自算出の注目度): 13.911001648611832
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The close coupling of artificial intelligence (AI) and electroencephalography (EEG) has substantially advanced human-computer interaction (HCI) technologies in the AI era. Different from traditional EEG systems, the interpretability and robustness of AI-based EEG systems are becoming particularly crucial. The interpretability clarifies the inner working mechanisms of AI models and thus can gain the trust of users. The robustness reflects the AI's reliability against attacks and perturbations, which is essential for sensitive and fragile EEG signals. Thus the interpretability and robustness of AI in EEG systems have attracted increasing attention, and their research has achieved great progress recently. However, there is still no survey covering recent advances in this field. In this paper, we present the first comprehensive survey and summarize the interpretable and robust AI techniques for EEG systems. Specifically, we first propose a taxonomy of interpretability by characterizing it into three types: backpropagation, perturbation, and inherently interpretable methods. Then we classify the robustness mechanisms into four classes: noise and artifacts, human variability, data acquisition instability, and adversarial attacks. Finally, we identify several critical and unresolved challenges for interpretable and robust AI in EEG systems and further discuss their future directions.
- Abstract(参考訳): 人工知能(AI)と脳波(EEG)の密結合は、AI時代において人間とコンピュータの相互作用(HCI)技術を大幅に進歩させてきた。
従来の脳波システムとは異なり、AIベースの脳波システムの解釈可能性と堅牢性は特に重要になっている。
解釈可能性は、AIモデルの内部動作メカニズムを明確にし、それによってユーザの信頼を得ることができる。
この堅牢性は、攻撃や摂動に対するAIの信頼性を反映している。
このように、脳波システムにおけるAIの解釈可能性と堅牢性は注目され、その研究は近年大きな進歩を遂げている。
しかし、この分野での最近の進歩についての調査は行われていない。
本稿では,脳波システムのための解釈可能な,堅牢なAI技術について概説する。
具体的には、まず、バックプロパゲーション、摂動、本質的に解釈可能な方法の3つのタイプに特徴付けることによって、解釈可能性の分類法を提案する。
次に、ロバスト性メカニズムを、ノイズとアーティファクト、人間の可変性、データ取得不安定性、敵攻撃の4つのクラスに分類する。
最後に、脳波システムにおけるAIの解釈と堅牢性に関するいくつかの重要かつ未解決の課題を特定し、今後の方向性についてさらに議論する。
関連論文リスト
- Imagining and building wise machines: The centrality of AI metacognition [78.76893632793497]
AIシステムは知恵を欠いている。
AI研究はタスクレベルの戦略に焦点を当てているが、メタ認知はAIシステムでは未発達である。
メタ認知機能をAIシステムに統合することは、その堅牢性、説明可能性、協力性、安全性を高めるために不可欠である。
論文 参考訳(メタデータ) (2024-11-04T18:10:10Z) - A Survey on Failure Analysis and Fault Injection in AI Systems [28.30817443151044]
AIシステムの複雑さは脆弱性を露呈し、レジリエンスと信頼性を確保するために、障害分析(FA)と障害注入(FI)の堅牢な方法を必要とする。
この研究は、AIシステムの6層にわたる既存のFAとFIのアプローチを詳細に調査することで、このギャップを埋める。
この結果から,AIシステム障害の分類,既存のFIツールの能力評価,実世界とシミュレーション失敗の相違点が明らかになった。
論文 参考訳(メタデータ) (2024-06-28T00:32:03Z) - Evolutionary Computation and Explainable AI: A Roadmap to Understandable Intelligent Systems [37.02462866600066]
進化的計算(EC)は、説明可能なAI(XAI)に寄与する大きな可能性を提供する
本稿では、XAIの紹介を行い、機械学習モデルを説明するための現在の技術についてレビューする。
次に、ECがXAIでどのように活用できるかを検討し、ECテクニックを取り入れた既存のXAIアプローチを調べます。
論文 参考訳(メタデータ) (2024-06-12T02:06:24Z) - Testing autonomous vehicles and AI: perspectives and challenges from cybersecurity, transparency, robustness and fairness [53.91018508439669]
この研究は、人工知能を自律走行車(AV)に統合する複雑さを探求する
AIコンポーネントがもたらした課題と、テスト手順への影響を調べます。
本稿は、重要な課題を特定し、AV技術におけるAIの研究・開発に向けた今後の方向性を提案する。
論文 参考訳(メタデータ) (2024-02-21T08:29:42Z) - Predictable Artificial Intelligence [77.1127726638209]
本稿では予測可能なAIのアイデアと課題を紹介する。
それは、現在および将来のAIエコシステムの重要な妥当性指標を予測できる方法を探る。
予測可能性を達成することは、AIエコシステムの信頼、責任、コントロール、アライメント、安全性を促進するために不可欠である、と私たちは主張する。
論文 参考訳(メタデータ) (2023-10-09T21:36:21Z) - The Future of Fundamental Science Led by Generative Closed-Loop
Artificial Intelligence [67.70415658080121]
機械学習とAIの最近の進歩は、技術革新、製品開発、社会全体を破壊している。
AIは、科学的な実践とモデル発見のための高品質なデータの大規模なデータセットへのアクセスがより困難であるため、基礎科学にはあまり貢献していない。
ここでは、科学的な発見に対するAI駆動、自動化、クローズドループアプローチの側面を調査し、調査する。
論文 参考訳(メタデータ) (2023-07-09T21:16:56Z) - AI Maintenance: A Robustness Perspective [91.28724422822003]
我々は、AIライフサイクルにおけるロバストネスの課題を強調し、自動車のメンテナンスに類似させることで、AIのメンテナンスを動機付ける。
本稿では,ロバストネスリスクの検出と軽減を目的としたAIモデル検査フレームワークを提案する。
我々のAIメンテナンスの提案は、AIライフサイクル全体を通して堅牢性評価、状態追跡、リスクスキャン、モデル硬化、規制を促進する。
論文 参考訳(メタデータ) (2023-01-08T15:02:38Z) - The Role of AI in Drug Discovery: Challenges, Opportunities, and
Strategies [97.5153823429076]
この分野でのAIのメリット、課題、欠点についてレビューする。
データ拡張、説明可能なAIの使用、従来の実験手法とAIの統合についても論じている。
論文 参考訳(メタデータ) (2022-12-08T23:23:39Z) - Examining the Differential Risk from High-level Artificial Intelligence
and the Question of Control [0.0]
将来のAI能力の範囲と範囲は、依然として重要な不確実性である。
AIの不透明な意思決定プロセスの統合と監視の程度には懸念がある。
本研究では、AIリスクをモデル化し、代替先分析のためのテンプレートを提供する階層的な複雑なシステムフレームワークを提案する。
論文 参考訳(メタデータ) (2022-11-06T15:46:02Z) - LioNets: A Neural-Specific Local Interpretation Technique Exploiting
Penultimate Layer Information [6.570220157893279]
解釈可能な機械学習(IML)は研究の緊急のトピックである。
本稿では,テキストデータと時系列データに適用される局所的,神経特異的な解釈プロセスに焦点を当てる。
論文 参考訳(メタデータ) (2021-04-13T09:39:33Z) - AAAI FSS-19: Human-Centered AI: Trustworthiness of AI Models and Data
Proceedings [8.445274192818825]
予測モデルは不確実性を認識し、信頼できる予測をもたらすことが不可欠である。
このシンポジウムの焦点は、データ品質と技術的堅牢性と安全性を改善するAIシステムであった。
広く定義された領域からの提出はまた、説明可能なモデル、人間の信頼、AIの倫理的側面といった要求に対処するアプローチについても論じた。
論文 参考訳(メタデータ) (2020-01-15T15:30:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。