論文の概要: LaMP: When Large Language Models Meet Personalization
- arxiv url: http://arxiv.org/abs/2304.11406v1
- Date: Sat, 22 Apr 2023 13:42:04 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-25 18:39:05.197394
- Title: LaMP: When Large Language Models Meet Personalization
- Title(参考訳): LaMP: 大きな言語モデルがパーソナライゼーションに出会ったとき
- Authors: Alireza Salemi, Sheshera Mysore, Michael Bendersky, Hamed Zamani
- Abstract要約: 本稿では、自然言語理解・生成の現状におけるパーソナライズの重要性を強調する。
パーソナライズされたアウトプットを生成するための言語モデルのトレーニングと評価のための新しいベンチマークであるLaMPベンチマークを紹介します。
- 参考スコア(独自算出の注目度): 23.924772135758797
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: This paper highlights the importance of personalization in the current state
of natural language understanding and generation and introduces the LaMP
benchmark -- a novel benchmark for training and evaluating language models for
producing personalized outputs. LaMP offers a comprehensive evaluation
framework with diverse language tasks and multiple entries for each user
profile. It consists of seven personalized tasks, spanning three classification
and four text generation tasks. We also propose a retrieval augmentation
approach that retrieves personalized items from user profiles to construct
personalized prompts for large language models. Our baseline zero-shot and
fine-tuned model results indicate that LMs utilizing profile augmentation
outperform their counterparts that do not factor in profile information.
- Abstract(参考訳): 本稿では、自然言語理解と生成の現状におけるパーソナライズの重要性を強調し、パーソナライズされた出力を生成するための言語モデルのトレーニングと評価のための新しいベンチマークであるLaMPベンチマークを紹介する。
LaMPは、さまざまな言語タスクと、各ユーザプロファイルに対する複数のエントリを備えた総合的な評価フレームワークを提供する。
それは7つのパーソナライズされたタスクで構成され、3つの分類と4つのテキスト生成タスクにまたがる。
また,ユーザプロファイルからパーソナライズされた項目を検索し,大規模言語モデルのためのパーソナライズされたプロンプトを構築する検索拡張手法を提案する。
ベースラインゼロショットモデルと微調整モデルにより、プロファイル情報に影響を及ぼさないプロファイル拡張を用いたLMの方が、プロファイル情報よりも優れていることを示す。
関連論文リスト
- P-MMEval: A Parallel Multilingual Multitask Benchmark for Consistent Evaluation of LLMs [84.24644520272835]
大きな言語モデル(LLM)は、翻訳、コード生成、推論といったタスクにまたがる様々な多言語機能を示す。
以前の評価では、その範囲を基本自然言語処理(NLP)や、独立した機能固有のタスクに制限することが多かった。
我々は、これらのベンチマークの有用性に関する以前の研究の監視に対処するため、大規模ベンチマークから利用可能な、合理的なベンチマークを選択するパイプラインを提案する。
本稿では,P-MMEvalを提案する。P-MMEval,P-MMEval,P-MMEval,P-MMEval,P-MMEval,P-MMEval。
論文 参考訳(メタデータ) (2024-11-14T01:29:36Z) - Optimization Methods for Personalizing Large Language Models through Retrieval Augmentation [23.174810143027234]
本稿では,大規模言語モデル(LLM)のパーソナライズのための検索強化アプローチについて検討する。
パーソナライズされた生成を目的とした,限られた数の個人文書を大規模言語モデルに配信する検索モデルを最適化するための最初の試みを提案する。
論文 参考訳(メタデータ) (2024-04-09T02:58:05Z) - PMG : Personalized Multimodal Generation with Large Language Models [20.778869086174137]
本稿では,大規模言語モデル(LLM)を用いたパーソナライズされたマルチモーダル生成手法を提案する。
2つのデータセットに関する広範な実験を通じて、その応用を実証し、その性能を検証する。
PMGのパーソナライゼーションはLPIPSで最大8%向上し, 生成精度は向上した。
論文 参考訳(メタデータ) (2024-04-07T03:05:57Z) - Accelerating Multilingual Language Model for Excessively Tokenized Languages [3.5570874721859016]
大型言語モデル(LLM)のトークン化子は、文字やUnicodeレベルのトークンを非ローマ語アルファベットの言語で断片化することが多い。
このような言語でテキスト生成を高速化する,シンプルで効果的なフレームワークを提案する。
論文 参考訳(メタデータ) (2024-01-19T12:26:57Z) - Exploring the Maze of Multilingual Modeling [2.0849578298972835]
我々は,mBERT,XLM-R,GPT-3の3つの言語モデルについて総合評価を行った。
その結果,言語固有の事前学習データの量はモデル性能において重要な役割を担っているが,汎用リソースの可用性,言語ファミリ,スクリプトタイプといった他の要因も重要な特徴であることがわかった。
論文 参考訳(メタデータ) (2023-10-09T04:48:14Z) - Soft Language Clustering for Multilingual Model Pre-training [57.18058739931463]
本稿では,インスタンスを条件付きで符号化するためのフレキシブルガイダンスとして,コンテキスト的にプロンプトを検索するXLM-Pを提案する。
我々のXLM-Pは、(1)言語間における言語不変および言語固有知識の軽量なモデリングを可能にし、(2)他の多言語事前学習手法との容易な統合を可能にする。
論文 参考訳(メタデータ) (2023-06-13T08:08:08Z) - Generalizing Multimodal Pre-training into Multilingual via Language
Acquisition [54.69707237195554]
英語のVision-Language Pre-Trainingは、様々な下流タスクで大きな成功を収めた。
この成功を英語以外の言語に一般化するために、Multilingual Vision-Language Pre-Trainingを通じていくつかの取り組みがなされている。
単言語視覚言語事前学習モデルを多言語に容易に一般化できるtextbfMultitextbfLingual textbfAcquisition (MLA) フレームワークを提案する。
論文 参考訳(メタデータ) (2022-05-29T08:53:22Z) - Exploring Teacher-Student Learning Approach for Multi-lingual
Speech-to-Intent Classification [73.5497360800395]
複数の言語をサポートするエンドツーエンドシステムを開発した。
我々は、事前訓練された多言語自然言語処理モデルからの知識を利用する。
論文 参考訳(メタデータ) (2021-09-28T04:43:11Z) - Specializing Multilingual Language Models: An Empirical Study [50.7526245872855]
事前訓練された多言語モデルからの文脈化語表現は、自然言語タスクに対処するデファクトスタンダードとなっている。
これらのモデルではまれに、あるいは一度も見られない言語では、そのようなモデルを直接使用すると、最適な表現やデータの使用につながることが多い。
論文 参考訳(メタデータ) (2021-06-16T18:13:55Z) - Evaluating Cross-Lingual Transfer Learning Approaches in Multilingual
Conversational Agent Models [1.52292571922932]
自然言語理解(NLU)モデルのための汎用多言語モデルフレームワークを提案する。
これらの多言語モデルが,言語固有のテストデータにまたがる単言語モデルと比較して,同等あるいは優れた性能に到達できることを示す。
論文 参考訳(メタデータ) (2020-12-07T17:14:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。