論文の概要: Bake off redux: a review and experimental evaluation of recent time series classification algorithms
- arxiv url: http://arxiv.org/abs/2304.13029v2
- Date: Fri, 26 Apr 2024 11:28:38 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-29 18:27:27.357196
- Title: Bake off redux: a review and experimental evaluation of recent time series classification algorithms
- Title(参考訳): Bake off redux:最近の時系列分類アルゴリズムのレビューと実験的評価
- Authors: Matthew Middlehurst, Patrick Schäfer, Anthony Bagnall,
- Abstract要約: 2017年、カリフォルニア大学リバーサイド校(UCR)のアーカイブから得られた85のデータセットに対して、18の時系列分類(TSC)アルゴリズムを比較した。
この研究は一般に「ベイクオフ」と呼ばれ、9つのアルゴリズムのみがダイナミック・タイム・ウォーピング(DTW)やローテーション・フォレスト(Rotation Forest)のベンチマークよりもはるかに優れた性能を示した。
提案したカテゴリが、当初からどのように進歩してきたかを確認し、以前のベスト・オブ・カテゴリに対して、新しいアルゴリズムの性能を評価する。
- 参考スコア(独自算出の注目度): 1.0992151305603266
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In 2017, a research paper compared 18 Time Series Classification (TSC) algorithms on 85 datasets from the University of California, Riverside (UCR) archive. This study, commonly referred to as a `bake off', identified that only nine algorithms performed significantly better than the Dynamic Time Warping (DTW) and Rotation Forest benchmarks that were used. The study categorised each algorithm by the type of feature they extract from time series data, forming a taxonomy of five main algorithm types. This categorisation of algorithms alongside the provision of code and accessible results for reproducibility has helped fuel an increase in popularity of the TSC field. Over six years have passed since this bake off, the UCR archive has expanded to 112 datasets and there have been a large number of new algorithms proposed. We revisit the bake off, seeing how each of the proposed categories have advanced since the original publication, and evaluate the performance of newer algorithms against the previous best-of-category using an expanded UCR archive. We extend the taxonomy to include three new categories to reflect recent developments. Alongside the originally proposed distance, interval, shapelet, dictionary and hybrid based algorithms, we compare newer convolution and feature based algorithms as well as deep learning approaches. We introduce 30 classification datasets either recently donated to the archive or reformatted to the TSC format, and use these to further evaluate the best performing algorithm from each category. Overall, we find that two recently proposed algorithms, Hydra+MultiROCKET and HIVE-COTEv2, perform significantly better than other approaches on both the current and new TSC problems.
- Abstract(参考訳): 2017年、カリフォルニア大学リバーサイド校(UCR)のアーカイブから得られた85のデータセットに対して、18の時系列分類(TSC)アルゴリズムを比較した。
この研究は一般に「ベイクオフ」と呼ばれ、9つのアルゴリズムのみが使用されていた動的時間ウォーピング(DTW)や回転フォレストベンチマークよりもはるかに優れた性能を示した。
この研究は、各アルゴリズムを時系列データから抽出した特徴の種類によって分類し、5つの主要なアルゴリズムの分類を作成した。
このアルゴリズムの分類と、コード提供と再現性のためのアクセス可能な結果の分類は、TSC分野の人気向上に寄与した。
このブームから6年以上が経過し、UCRアーカイブは112のデータセットに拡張され、多くの新しいアルゴリズムが提案されている。
提案したカテゴリが、当初からどのように進歩してきたかを確認し、拡張されたUCRアーカイブを用いて、以前のベスト・オブ・カテゴリに対して、新しいアルゴリズムの性能を評価する。
我々は、最近の発展を反映する3つの新しいカテゴリーを含むように分類を拡張します。
提案した距離,間隔,シェープレット,辞書,ハイブリッドベースアルゴリズムとともに,より新しい畳み込みアルゴリズムと特徴ベースアルゴリズム,ディープラーニングアプローチを比較した。
我々は、最近アーカイブに寄贈された30の分類データセットや、TSCフォーマットに改定された30の分類データセットを導入し、これらを用いて、各カテゴリの最高の性能アルゴリズムをさらに評価する。
近年提案されているHydra+MultiROCKET と HIVE-COTEv2 のアルゴリズムは,現在のTSC 問題と新しい TSC 問題の両方において,他の手法よりも優れていることがわかった。
関連論文リスト
- Regularization-Based Methods for Ordinal Quantification [49.606912965922504]
順序の場合、すなわち n>2 クラスの集合上で全順序が定義される場合について研究する。
本稿では,従来のアルゴリズムよりも優れた正規化OQアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-10-13T16:04:06Z) - Performance Evaluation and Comparison of a New Regression Algorithm [4.125187280299247]
新たに提案した回帰アルゴリズムの性能を,従来の4つの機械学習アルゴリズムと比較した。
GitHubリポジトリにソースコードを提供したので、読者は結果の複製を自由にできます。
論文 参考訳(メタデータ) (2023-06-15T13:01:16Z) - A Gold Standard Dataset for the Reviewer Assignment Problem [117.59690218507565]
類似度スコア(Similarity score)とは、論文のレビューにおいて、レビュアーの専門知識を数値で見積もるものである。
私たちのデータセットは、58人の研究者による477の自己申告された専門知識スコアで構成されています。
2つの論文をレビュアーに関連付けるタスクは、簡単なケースでは12%~30%、ハードケースでは36%~43%である。
論文 参考訳(メタデータ) (2023-03-23T16:15:03Z) - HARRIS: Hybrid Ranking and Regression Forests for Algorithm Selection [75.84584400866254]
両アプローチの強みを両アプローチの弱さを緩和しつつ組み合わせ, 特殊林を利用した新しいアルゴリズムセレクタを提案する。
HARRISの決定は、ハイブリッドランキングと回帰損失関数に基づいて最適化された木を作成する森林モデルに基づいている。
論文 参考訳(メタデータ) (2022-10-31T14:06:11Z) - A Tent L\'evy Flying Sparrow Search Algorithm for Feature Selection: A
COVID-19 Case Study [1.6436293069942312]
情報科学の急速な発展によって引き起こされる「次元のカルス」は、大きなデータセットを扱う際に悪影響を及ぼす可能性がある。
本研究では,スナロー探索アルゴリズム(SSA)の変種であるTent L'evy Flying Sparrow Searchアルゴリズム(TFSSA)を提案する。
TFSSAは、分類のためにパッキングパターンにおける機能の最も優れたサブセットを選択するために使用される。
論文 参考訳(メタデータ) (2022-09-20T15:12:10Z) - Early Time-Series Classification Algorithms: An Empirical Comparison [59.82930053437851]
早期時系列分類(Early Time-Series Classification, ETSC)は、できるだけ少ない測定で時系列のクラスを予測するタスクである。
既存のETSCアルゴリズムを公開データと,新たに導入された2つのデータセットで評価した。
論文 参考訳(メタデータ) (2022-03-03T10:43:56Z) - The FreshPRINCE: A Simple Transformation Based Pipeline Time Series
Classifier [0.0]
我々は、最先端と見なされるアルゴリズムの複雑さが本当に必要かどうかを考察する。
最初に提案されたアプローチは、要約統計やその他の時系列特徴抽出アプローチの単純なパイプラインである。
我々はこれらの手法をUCC時系列データセットアーカイブ上でテストし、TSC文献がこれらの手法の有効性を見落としているかどうかを確認する。
論文 参考訳(メタデータ) (2022-01-28T11:23:58Z) - Estimating leverage scores via rank revealing methods and randomization [50.591267188664666]
任意のランクの正方形密度あるいはスパース行列の統計レバレッジスコアを推定するアルゴリズムについて検討した。
提案手法は,高密度およびスパースなランダム化次元性還元変換の合成と階調明細化法を組み合わせることに基づく。
論文 参考訳(メタデータ) (2021-05-23T19:21:55Z) - Benchmarking Multivariate Time Series Classification Algorithms [69.12151492736524]
時系列分類(TSC)は、順序付き、実値付き、属性から離散的なターゲット変数の予測モデルを構築することを含む。
近年,従来の技術よりも大幅に改良された新しいTSCアルゴリズムが開発されている。
本稿では, 深層学習, シェープレット, 単語の袋を用いた MTSC アルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-07-26T15:56:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。