論文の概要: Breaking barriers in two-party quantum cryptography via stochastic
semidefinite programming
- arxiv url: http://arxiv.org/abs/2304.13200v1
- Date: Wed, 26 Apr 2023 00:00:48 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-27 16:05:53.999940
- Title: Breaking barriers in two-party quantum cryptography via stochastic
semidefinite programming
- Title(参考訳): 確率半定値プログラミングによる2要素量子暗号の破壊障壁
- Authors: Akshay Bansal and Jamie Sikora
- Abstract要約: 私たちは、ビットコミットメント、弱いコインフリップ、および不愉快な転送プロトコルを切り替えて、セキュリティを改善する方法を見つけました。
我々はまた、ゴミを宝にするために選択を使用することで、ラビンの排他的移動のための最初の量子プロトコルを産み出す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In the last two decades, there has been much effort in finding secure
protocols for two-party cryptographic tasks. It has since been discovered that
even with quantum mechanics, many such protocols are limited in their security
promises. In this work, we use stochastic selection, an idea from stochastic
programming, to circumvent such limitations. For example, we find a way to
switch between bit commitment, weak coin flipping, and oblivious transfer
protocols to improve their security. We also use stochastic selection to turn
trash into treasure yielding the first quantum protocol for Rabin oblivious
transfer.
- Abstract(参考訳): 過去20年間、サードパーティの暗号処理のためのセキュアなプロトコルを見つける努力が続けられてきた。
その後、量子力学でさえ、そのようなプロトコルの多くはセキュリティの約束に制限されていることが判明した。
本研究では,そのような制約を回避するために,確率的プログラミングのアイデアである確率的選択を用いる。
例えば、ビットのコミット、コインのフリップの弱さ、そしてセキュリティを改善するために不注意な転送プロトコルを切り替える方法を見つけることができます。
我々はまた、確率的選択を用いてゴミを宝にし、ラビンの難読化のための最初の量子プロトコルを産み出す。
関連論文リスト
- Incomplete quantum oblivious transfer with perfect one-sided security [0.0]
我々は、送信者が受信機に2ビットの情報を送信する2つの不愉快な転送のうち1つを考える。
私たちは最低限の不正確率を見つけることを目指している。
非対話型量子プロトコルは非対話型古典的プロトコルよりも優れていることを示す。
論文 参考訳(メタデータ) (2024-09-26T06:35:36Z) - The Latency Price of Threshold Cryptosystem in Blockchains [52.359230560289745]
本稿では,Byzantine-fault Tolerant(BFT)コンセンサスプロトコルを用いた,しきい値暗号とブロックチェーンのクラス間の相互作用について検討する。
しきい値暗号システムに対する既存のアプローチは、しきい値暗号プロトコルを実行するための少なくとも1つのメッセージ遅延の遅延オーバーヘッドを導入している。
しきい値が狭いブロックチェーンネイティブのしきい値暗号システムに対して,このオーバーヘッドを取り除く機構を提案する。
論文 参考訳(メタデータ) (2024-07-16T20:53:04Z) - An Efficient and Secure Arbitrary N-Party Quantum Key Agreement Protocol
Using Bell States [16.277401577186605]
ベル状態とベル測定を用いた2つの量子鍵合意プロトコルが最近Shuklaらによって提案された。
Zhu氏らは、いくつかのセキュリティ欠陥があることを指摘し、改善されたバージョンを提案した。
本研究は,量子鍵契約の正当性,セキュリティ,プライバシ,公正性を保証できるプロトコルであることを示す。
論文 参考訳(メタデータ) (2023-09-22T09:02:18Z) - Simple Tests of Quantumness Also Certify Qubits [69.96668065491183]
量子性の検定は、古典的検証者が証明者が古典的でないことを(のみ)証明できるプロトコルである。
我々は、あるテンプレートに従う量子性のテストを行い、(Kalai et al., 2022)のような最近の提案を捉えた。
すなわち、同じプロトコルは、証明可能なランダム性や古典的な量子計算のデリゲートといったアプリケーションの中心にあるビルディングブロックであるqubitの認定に使用できる。
論文 参考訳(メタデータ) (2023-03-02T14:18:17Z) - Conference key agreement in a quantum network [67.410870290301]
量子会議鍵契約(QCKA)により、複数のユーザが共有マルチパーティの絡み合った状態からセキュアなキーを確立することができる。
N-qubit Greenberger-Horne-Zeilinger(GHZ)状態の単一コピーを用いて、セキュアなN-user会議鍵ビットを消去して、このプロトコルを効率的に実装することができる。
論文 参考訳(メタデータ) (2022-07-04T18:00:07Z) - Secure multi-party quantum computation protocol for quantum circuits: the exploitation of triply-even quantum error-correcting codes [2.915868985330569]
MPQCプロトコルは、エラーのない分散量子計算を可能にする暗号プリミティブである。
本稿では,従来の量子誤り訂正符号を採用したMPQCプロトコルを提案する。
論文 参考訳(メタデータ) (2022-06-10T04:43:11Z) - A constant lower bound for any quantum protocol for secure function
evaluation [0.0]
量子プロトコルでさえ、完璧(あるいはほぼ完璧)なセキュリティは不可能であることを示す。
一定の下界は、量子プロトコルのセキュリティを任意に増幅できないことを暗示しているため、実際的な関心事である。
論文 参考訳(メタデータ) (2022-03-15T21:40:48Z) - Efficient Bipartite Entanglement Detection Scheme with a Quantum
Adversarial Solver [89.80359585967642]
パラメータ化量子回路で完了した2プレーヤゼロサムゲームとして,両部絡み検出を再構成する。
このプロトコルを線形光ネットワーク上で実験的に実装し、5量子量子純状態と2量子量子混合状態の両部絡み検出に有効であることを示す。
論文 参考訳(メタデータ) (2022-03-15T09:46:45Z) - Asymptotically secure All-or-nothing Quantum Oblivious Transfer [0.0]
我々は、p-threshold all-or-nothing oblivious Transferのための独立にセキュアな量子スキームを提案する。
スキームは、量子力学によって許される任意の戦略に対して無条件に安全であることが示されている。
論文 参考訳(メタデータ) (2021-11-16T14:01:25Z) - Quantum Multi-Solution Bernoulli Search with Applications to Bitcoin's
Post-Quantum Security [67.06003361150228]
作業の証明(英: proof of work、PoW)は、当事者が計算タスクの解決にいくらかの労力を費やしたことを他人に納得させることができる重要な暗号構造である。
本研究では、量子戦略に対してそのようなPoWの連鎖を見つけることの難しさについて検討する。
我々は、PoWs問題の連鎖が、マルチソリューションBernoulliサーチと呼ばれる問題に還元されることを証明し、量子クエリの複雑さを確立する。
論文 参考訳(メタデータ) (2020-12-30T18:03:56Z) - Quantum copy-protection of compute-and-compare programs in the quantum random oracle model [48.94443749859216]
計算・比較プログラム(Computer-and-compare program)として知られる回避関数のクラスに対する量子コピー保護スキームを導入する。
我々は,量子乱数オラクルモデル(QROM)において,完全悪意のある敵に対する非自明なセキュリティを実現することを証明した。
補完的な結果として、「セキュアソフトウェアリース」という,ソフトウェア保護の概念の弱さが示される。
論文 参考訳(メタデータ) (2020-09-29T08:41:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。