論文の概要: Tensor Decomposition for Model Reduction in Neural Networks: A Review
- arxiv url: http://arxiv.org/abs/2304.13539v1
- Date: Wed, 26 Apr 2023 13:12:00 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-27 14:22:06.796395
- Title: Tensor Decomposition for Model Reduction in Neural Networks: A Review
- Title(参考訳): ニューラルネットワークにおけるモデル縮小のためのテンソル分解
- Authors: Xingyi Liu and Keshab K. Parhi
- Abstract要約: 現代のニューラルネットワークはコンピュータビジョン(CV)と自然言語処理(NLP)の分野に革命をもたらした
複雑なCVタスクや画像分類、画像生成、機械翻訳といったNLPタスクの解決に広く用いられている。
本稿では,6つのテンソル分解法を概説し,モデルパラメータの圧縮能力について述べる。
- 参考スコア(独自算出の注目度): 13.96938227911258
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Modern neural networks have revolutionized the fields of computer vision (CV)
and Natural Language Processing (NLP). They are widely used for solving complex
CV tasks and NLP tasks such as image classification, image generation, and
machine translation. Most state-of-the-art neural networks are
over-parameterized and require a high computational cost. One straightforward
solution is to replace the layers of the networks with their low-rank tensor
approximations using different tensor decomposition methods. This paper reviews
six tensor decomposition methods and illustrates their ability to compress
model parameters of convolutional neural networks (CNNs), recurrent neural
networks (RNNs) and Transformers. The accuracy of some compressed models can be
higher than the original versions. Evaluations indicate that tensor
decompositions can achieve significant reductions in model size, run-time and
energy consumption, and are well suited for implementing neural networks on
edge devices.
- Abstract(参考訳): 現代のニューラルネットワークはコンピュータビジョン(CV)と自然言語処理(NLP)の分野に革命をもたらした。
複雑なCVタスクや画像分類、画像生成、機械翻訳といったNLPタスクの解決に広く用いられている。
ほとんどの最先端のニューラルネットワークは過剰パラメータであり、高い計算コストを必要とする。
簡単な解の1つは、異なるテンソル分解法を用いて、ネットワークの層をそれらの低ランクテンソル近似に置き換えることである。
本稿では,6つのテンソル分解法を考察し,畳み込みニューラルネットワーク(cnns),リカレントニューラルネットワーク(rnn)およびトランスフォーマのモデルパラメータを圧縮する能力について述べる。
いくつかの圧縮モデルの精度は、元のバージョンよりも高い。
評価の結果、テンソル分解はモデルサイズ、実行時間、エネルギー消費を大幅に削減でき、エッジデバイスにニューラルネットワークを実装するのに適していることが示された。
関連論文リスト
- An experimental comparative study of backpropagation and alternatives for training binary neural networks for image classification [1.0749601922718608]
バイナリニューラルネットワークは、ディープニューラルネットワークモデルのサイズを減らすことを約束する。
より強力なモデルをエッジデバイスにデプロイすることも可能だ。
しかしながら、バイナリニューラルネットワークは、バックプロパゲーションに基づく勾配降下法を用いて訓練することが依然として難しいことが証明されている。
論文 参考訳(メタデータ) (2024-08-08T13:39:09Z) - Novel Kernel Models and Exact Representor Theory for Neural Networks Beyond the Over-Parameterized Regime [52.00917519626559]
本稿では、ニューラルネットワークの2つのモデルと、任意の幅、深さ、トポロジーのニューラルネットワークに適用可能なトレーニングについて述べる。
また、局所外在性神経核(LeNK)の観点から、非正規化勾配降下を伴う階層型ニューラルネットワークトレーニングのための正確な表現子理論を提示する。
この表現論は、ニューラルネットワークトレーニングにおける高次統計学の役割と、ニューラルネットワークのカーネルモデルにおけるカーネル進化の影響について洞察を与える。
論文 参考訳(メタデータ) (2024-05-24T06:30:36Z) - Graph Neural Networks for Learning Equivariant Representations of Neural Networks [55.04145324152541]
本稿では,ニューラルネットワークをパラメータの計算グラフとして表現することを提案する。
我々のアプローチは、ニューラルネットワークグラフを多種多様なアーキテクチャでエンコードする単一モデルを可能にする。
本稿では,暗黙的ニューラル表現の分類や編集など,幅広いタスクにおける本手法の有効性を示す。
論文 参考訳(メタデータ) (2024-03-18T18:01:01Z) - Permutation Equivariant Neural Functionals [92.0667671999604]
この研究は、他のニューラルネットワークの重みや勾配を処理できるニューラルネットワークの設計を研究する。
隠れた層状ニューロンには固有の順序がないため, 深いフィードフォワードネットワークの重みに生じる置換対称性に着目する。
実験の結果, 置換同変ニューラル関数は多種多様なタスクに対して有効であることがわかった。
論文 参考訳(メタデータ) (2023-02-27T18:52:38Z) - Variable Bitrate Neural Fields [75.24672452527795]
本稿では,特徴格子を圧縮し,メモリ消費を最大100倍に削減する辞書手法を提案する。
辞書の最適化をベクトル量子化オートデコーダ問題として定式化し、直接監督できない空間において、エンドツーエンドの離散神経表現を学習する。
論文 参考訳(メタデータ) (2022-06-15T17:58:34Z) - Low-bit Quantization of Recurrent Neural Network Language Models Using
Alternating Direction Methods of Multipliers [67.688697838109]
本稿では、乗算器の交互方向法(ADMM)を用いて、スクラッチから量子化RNNLMを訓練する新しい手法を提案する。
2つのタスクの実験から、提案されたADMM量子化は、完全な精度ベースライン RNNLM で最大31倍のモデルサイズ圧縮係数を達成したことが示唆された。
論文 参考訳(メタデータ) (2021-11-29T09:30:06Z) - A Sparse Coding Interpretation of Neural Networks and Theoretical
Implications [0.0]
深層畳み込みニューラルネットワークは、様々なコンピュータビジョンタスクにおいて前例のない性能を達成した。
本稿では、ReLUアクティベーションを持つニューラルネットワークのスパース符号化解釈を提案する。
正規化やプーリングなしに完全な畳み込みニューラルネットワークを導出する。
論文 参考訳(メタデータ) (2021-08-14T21:54:47Z) - Tensor-Train Networks for Learning Predictive Modeling of
Multidimensional Data [0.0]
有望な戦略は、物理的および化学的用途で非常に成功したテンソルネットワークに基づいています。
本研究では, 多次元回帰モデルの重みをテンソルネットワークを用いて学習し, 強力なコンパクト表現を実現することを示した。
TT形式の重みを計算力の低減で近似するための最小二乗を交互に行うアルゴリズムが提案されている。
論文 参考訳(メタデータ) (2021-01-22T16:14:38Z) - A Fully Tensorized Recurrent Neural Network [48.50376453324581]
重み付けされたRNNアーキテクチャを導入し、各リカレントセル内の個別の重み付け行列を共同で符号化する。
このアプローチはモデルのサイズを数桁削減するが、通常のRNNと同等あるいは優れた性能を維持している。
論文 参考訳(メタデータ) (2020-10-08T18:24:12Z) - Stable Low-rank Tensor Decomposition for Compression of Convolutional
Neural Network [19.717842489217684]
本稿では、畳み込み核のテンソル分解における縮退性に関する最初の研究である。
本稿では,畳み込みカーネルの低ランク近似を安定化し,効率的な圧縮を実現する新しい手法を提案する。
画像分類のための一般的なCNNアーキテクチャに対するアプローチを評価し,提案手法により精度が大幅に低下し,一貫した性能が得られることを示す。
論文 参考訳(メタデータ) (2020-08-12T17:10:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。