論文の概要: Quantum Natural Policy Gradients: Towards Sample-Efficient Reinforcement
Learning
- arxiv url: http://arxiv.org/abs/2304.13571v2
- Date: Wed, 9 Aug 2023 11:41:27 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-10 17:39:39.775049
- Title: Quantum Natural Policy Gradients: Towards Sample-Efficient Reinforcement
Learning
- Title(参考訳): 量子自然政策勾配:サンプル効率強化学習に向けて
- Authors: Nico Meyer, Daniel D. Scherer, Axel Plinge, Christopher Mutschler, and
Michael J. Hartmann
- Abstract要約: 本稿では,量子フィッシャー情報行列の効率的な近似を生かした量子自然政策勾配(QNPG)アルゴリズムを提案する。
我々は,QNPGがコンバージェンス速度と安定性に関するコンテキスト帯域環境の1次学習より優れていることを実験的に実証した。
12kbitのハードウェアデバイスでトレーニングすることで,本手法の実現可能性を示す。
- 参考スコア(独自算出の注目度): 1.3946033794136758
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Reinforcement learning is a growing field in AI with a lot of potential.
Intelligent behavior is learned automatically through trial and error in
interaction with the environment. However, this learning process is often
costly. Using variational quantum circuits as function approximators
potentially can reduce this cost. In order to implement this, we propose the
quantum natural policy gradient (QNPG) algorithm -- a second-order
gradient-based routine that takes advantage of an efficient approximation of
the quantum Fisher information matrix. We experimentally demonstrate that QNPG
outperforms first-order based training on Contextual Bandits environments
regarding convergence speed and stability and moreover reduces the sample
complexity. Furthermore, we provide evidence for the practical feasibility of
our approach by training on a 12-qubit hardware device.
- Abstract(参考訳): 強化学習はAIにおける成長分野であり、多くの可能性がある。
知的行動は、試行錯誤と環境との相互作用を通じて自動的に学習される。
しかし、この学習プロセスはしばしばコストがかかる。
関数近似器として変分量子回路を使用することで、このコストを削減できる。
これを実現するために、量子フィッシャー情報行列の効率的な近似を利用する2階勾配に基づくルーチンである量子自然ポリシー勾配(QNPG)アルゴリズムを提案する。
我々は,QNPGがコンバージェンス速度と安定性に関するコンテキスト帯域環境の1次学習よりも優れており,サンプルの複雑さも低減できることを示した。
さらに,12kbitのハードウェアデバイス上でのトレーニングにより,本手法の実現可能性を示す。
関連論文リスト
- From Easy to Hard: Tackling Quantum Problems with Learned Gadgets For Real Hardware [0.0]
強化学習は強力なアプローチであることが証明されているが、量子ビット上の可能な操作の空間の指数的スケーリングによって、多くの制限が残っている。
本稿では,合成ゲートを自動的に学習するアルゴリズム($gadgets$)を開発し,探索を容易にするための強化学習エージェントに追加のアクションとして追加する。
GRLでは,TFIMの基底状態を最大107ドルの折り畳みで推定する際の誤差を改善する,非常にコンパクトなPQCが見つかる。
論文 参考訳(メタデータ) (2024-10-31T22:02:32Z) - Learning Parameterized Quantum Circuits with Quantum Gradient [8.64967968665265]
我々は、量子勾配を利用して勾配型コスト関数のPQC学習を強化するネスト最適化モデルを導入する。
我々の手法は量子アルゴリズムを用いて、PQC学習における永続的な課題である勾配の消失のタイプを特定し、克服する。
論文 参考訳(メタデータ) (2024-09-30T07:50:47Z) - Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
d可変RZゲートとG-dクリフォードゲートを含む量子回路を与えられた場合、学習者は純粋に古典的な推論を行い、その線形特性を効率的に予測できるだろうか?
我々は、d で線形にスケーリングするサンプルの複雑さが、小さな予測誤差を達成するのに十分であり、対応する計算の複雑さは d で指数関数的にスケールすることを証明する。
我々は,予測誤差と計算複雑性をトレードオフできるカーネルベースの学習モデルを考案し,多くの実践的な環境で指数関数からスケーリングへ移行した。
論文 参考訳(メタデータ) (2024-08-22T08:21:28Z) - QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEAはノイズ適応型量子回路のインタイムスパース探索である。
1)トレーニング中の暗黙の回路容量と(2)雑音の頑健さの2つの主要な目標を達成することを目的としている。
提案手法は, 量子ゲート数の半減と回路実行の2倍の時間節約で, 最先端の計算結果を確立する。
論文 参考訳(メタデータ) (2024-01-10T22:33:00Z) - Quantum Imitation Learning [74.15588381240795]
本稿では、量子優位性を利用してILを高速化する量子模倣学習(QIL)を提案する。
量子行動クローニング(Q-BC)と量子生成逆模倣学習(Q-GAIL)という2つのQILアルゴリズムを開発した。
実験結果から,Q-BCとQ-GAILの両者が,従来のものと同等の性能を達成できることが判明した。
論文 参考訳(メタデータ) (2023-04-04T12:47:35Z) - Quantum policy gradient algorithms [1.5293427903448025]
強化学習環境への量子アクセスを与えられた場合、学習のスピードアップが可能であることを示す。
本研究では、最先端の強化学習ポリシーをトレーニングするための量子アルゴリズムを設計する。
パラメタライズド量子回路から得られる強化学習方針は良好であることがわかった。
論文 参考訳(メタデータ) (2022-12-19T09:45:58Z) - Optimizing Tensor Network Contraction Using Reinforcement Learning [86.05566365115729]
本稿では,グラフニューラルネットワーク(GNN)と組み合わせた強化学習(RL)手法を提案する。
この問題は、巨大な検索スペース、重い尾の報酬分布、そして困難なクレジット割り当てのために非常に難しい。
GNNを基本方針として利用するRLエージェントが,これらの課題にどのように対処できるかを示す。
論文 参考訳(メタデータ) (2022-04-18T21:45:13Z) - Quantum Annealing Formulation for Binary Neural Networks [40.99969857118534]
本研究では、リソース制約のあるデバイスを意図した軽量で強力なモデルであるバイナリニューラルネットワークについて検討する。
トレーニング問題に対する2次非制約バイナリ最適化の定式化を考案する。
問題は難解であり、すなわち、二分重みを推定するコストはネットワークサイズと指数関数的にスケールするが、どのようにして問題を量子アニール器に直接最適化できるかを示す。
論文 参考訳(メタデータ) (2021-07-05T03:20:54Z) - On exploring the potential of quantum auto-encoder for learning quantum systems [60.909817434753315]
そこで我々は,古典的な3つのハードラーニング問題に対処するために,QAEに基づく効果的な3つの学習プロトコルを考案した。
私たちの研究は、ハード量子物理学と量子情報処理タスクを達成するための高度な量子学習アルゴリズムの開発に新たな光を当てています。
論文 参考訳(メタデータ) (2021-06-29T14:01:40Z) - Optimal training of variational quantum algorithms without barren
plateaus [0.0]
変分量子アルゴリズム(VQA)は、短期量子コンピュータの効率的な利用を約束する。
量子状態学習のためのVQAを最適に訓練する方法を示す。
量子機械学習におけるガウスカーネルの応用を提案する。
論文 参考訳(メタデータ) (2021-04-29T17:54:59Z) - Preparation of excited states for nuclear dynamics on a quantum computer [117.44028458220427]
量子コンピュータ上で励起状態を作成するための2つの異なる方法を研究する。
シミュレーションおよび実量子デバイス上でこれらの手法をベンチマークする。
これらの結果から,フォールトトレラントデバイスに優れたスケーリングを実現するために設計された量子技術が,接続性やゲート忠実性に制限されたデバイスに実用的なメリットをもたらす可能性が示唆された。
論文 参考訳(メタデータ) (2020-09-28T17:21:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。