論文の概要: EvoluNet: Advancing Dynamic Non-IID Transfer Learning on Graphs
- arxiv url: http://arxiv.org/abs/2305.00664v5
- Date: Fri, 31 May 2024 14:58:20 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-03 21:00:54.965599
- Title: EvoluNet: Advancing Dynamic Non-IID Transfer Learning on Graphs
- Title(参考訳): EvoluNet: グラフ上での動的非IID変換学習の改善
- Authors: Haohui Wang, Yuzhen Mao, Yujun Yan, Yaoqing Yang, Jianhui Sun, Kevin Choi, Balaji Veeramani, Alison Hu, Edward Bowen, Tyler Cody, Dawei Zhou,
- Abstract要約: グラフ上の動的非IID移動学習のための一般化を提案する。
理論的結果に触発されて,EvoluNetという新しい汎用フレームワークを導入する。
EvoluNetは最先端のモデルを最大12.1%上回っている。
- 参考スコア(独自算出の注目度): 13.035783088697661
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Non-IID transfer learning on graphs is crucial in many high-stakes domains. The majority of existing works assume stationary distribution for both source and target domains. However, real-world graphs are intrinsically dynamic, presenting challenges in terms of domain evolution and dynamic discrepancy between source and target domains. To bridge the gap, we shift the problem to the dynamic setting and pose the question: given the label-rich source graphs and the label-scarce target graphs both observed in previous T timestamps, how can we effectively characterize the evolving domain discrepancy and optimize the generalization performance of the target domain at the incoming T+1 timestamp? To answer it, we propose a generalization bound for dynamic non-IID transfer learning on graphs, which implies the generalization performance is dominated by domain evolution and domain discrepancy between source and target graphs. Inspired by the theoretical results, we introduce a novel generic framework named EvoluNet. It leverages a transformer-based temporal encoding module to model temporal information of the evolving domains and then uses a dynamic domain unification module to efficiently learn domain-invariant representations across the source and target domains. Finally, EvoluNet outperforms the state-of-the-art models by up to 12.1%, demonstrating its effectiveness in transferring knowledge from dynamic source graphs to dynamic target graphs.
- Abstract(参考訳): グラフ上の非IID移動学習は多くの高吸収領域において重要である。
既存の作業の大部分は、ソースドメインとターゲットドメインの両方に対して定常的な配布を前提としている。
しかし、現実世界のグラフは本質的に動的であり、ドメインの進化と、ソースとターゲットのドメイン間の動的相違の観点からの課題を提示する。
ラベルリッチなソースグラフとラベルスカースターゲットグラフがどちらも以前のTタイムスタンプで観測されていることを考慮すれば、進化しているドメインの不一致を効果的に特徴づけて、T+1タイムスタンプでターゲットドメインの一般化性能を最適化するにはどうすればよいのか?
そこで本研究では,グラフ上での動的非IID移動学習に限定した一般化法を提案する。
理論的結果に触発されて,EvoluNetという新しい汎用フレームワークを導入する。
トランスフォーマーベースのテンポラリエンコーディングモジュールを使用して、進化しているドメインの時間情報をモデル化し、動的ドメイン統一モジュールを使用して、ソースとターゲットドメインをまたいだドメイン不変表現を効率的に学習する。
最後に、EvoluNetは最先端のモデルを最大12.1%向上させ、動的ソースグラフから動的ターゲットグラフへの知識転送の有効性を示した。
関連論文リスト
- StyDeSty: Min-Max Stylization and Destylization for Single Domain Generalization [85.18995948334592]
単一のドメインの一般化(単一DG)は、単一のトレーニングドメインからのみ見えないドメインに一般化可能な堅牢なモデルを学ぶことを目的としている。
最先端のアプローチは、主に新しいデータを合成するために、敵対的な摂動やスタイルの強化といったデータ拡張に頼っている。
データ拡張の過程で、ソースと擬似ドメインのアライメントを明示的に考慮したemphStyDeStyを提案する。
論文 参考訳(メタデータ) (2024-06-01T02:41:34Z) - Gradient Transformation: Towards Efficient and Model-Agnostic Unlearning for Dynamic Graph Neural Networks [66.70786325911124]
グラフアンラーニングは、ユーザのプライバシ保護と、望ましくないデータによるネガティブな影響軽減に不可欠なツールとして登場した。
DGNNの普及に伴い、動的グラフアンラーニングの実装を検討することが不可欠となる。
DGNNアンラーニングを実装するために,効率的,効率的,モデルに依存しない,事後処理手法を提案する。
論文 参考訳(メタデータ) (2024-05-23T10:26:18Z) - Node-Time Conditional Prompt Learning In Dynamic Graphs [14.62182210205324]
DYGPROMPTは動的グラフモデリングのための新しい事前学習および迅速な学習フレームワークである。
我々はノードと時間の特徴が相互に特徴付けることを認識し、下流タスクにおけるノード時間パターンの進化をモデル化するための2つの条件ネットを提案する。
論文 参考訳(メタデータ) (2024-05-22T19:10:24Z) - Dynamic Graph Representation Learning via Edge Temporal States Modeling and Structure-reinforced Transformer [5.093187534912688]
本稿では,動的グラフ表現学習のための新しいフレームワークであるRecurrent Structure-Reinforced Graph Transformer (RSGT)を紹介する。
RSGTは、繰り返し学習パラダイムを通じて、グラフトポロジと進化力学の両方をコードする時間ノード表現をキャプチャする。
離散動的グラフ表現学習におけるRSGTの優れた性能を示し、動的リンク予測タスクにおける既存の手法よりも一貫して優れていることを示す。
論文 参考訳(メタデータ) (2023-04-20T04:12:50Z) - EasyDGL: Encode, Train and Interpret for Continuous-time Dynamic Graph Learning [92.71579608528907]
本稿では,3つのモジュールから構成される使い勝手の良いパイプライン(EasyDGL)を設計することを目的とする。
EasyDGLは、進化するグラフデータからモデルが学習する周波数コンテンツの予測力を効果的に定量化することができる。
論文 参考訳(メタデータ) (2023-03-22T06:35:08Z) - Augmenting Knowledge Transfer across Graphs [16.50013525404218]
本稿では,グラフ間の知識伝達を増強する汎用学習フレームワークであるTransNETを紹介する。
特に、様々なグラフ信号を異なる粒度で自然に定式化できるトリニティ信号という新しい概念を導入する。
TransNETは7つのベンチマークデータセットに対する既存のアプローチを、大きなマージンで上回ります。
論文 参考訳(メタデータ) (2022-12-09T08:46:02Z) - Time-aware Dynamic Graph Embedding for Asynchronous Structural Evolution [60.695162101159134]
既存の作業は、動的グラフを変更のシーケンスとして見るだけである。
動的グラフを接合時間に付随する時間的エッジシーケンスとして定式化する。
頂点とエッジのタイムパン
組み込みにはタイムアウェアなTransformerが提案されている。
vertexの動的接続と学習へのToEs。
頂点表現
論文 参考訳(メタデータ) (2022-07-01T15:32:56Z) - Adversarial Bipartite Graph Learning for Video Domain Adaptation [50.68420708387015]
ドメイン適応技術は,異なる領域間のモデルを適応させることに重点を置いているが,ビデオ認識領域ではめったに研究されていない。
近年,映像のソースと対象映像の表現を統一するために,対角学習を活用する視覚領域適応はビデオにはあまり効果がない。
本稿では,ソースとターゲットの相互作用を直接モデル化するAdversarial Bipartite Graph (ABG)学習フレームワークを提案する。
論文 参考訳(メタデータ) (2020-07-31T03:48:41Z) - Supervised Domain Adaptation using Graph Embedding [86.3361797111839]
領域適応法は、2つの領域間の分布がシフトし、それを認識しようとすると仮定する。
グラフ埋め込みに基づく汎用フレームワークを提案する。
提案手法が強力なドメイン適応フレームワークにつながることを示す。
論文 参考訳(メタデータ) (2020-03-09T12:25:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。