論文の概要: Interpreting Deep Forest through Feature Contribution and MDI Feature
Importance
- arxiv url: http://arxiv.org/abs/2305.00805v1
- Date: Mon, 1 May 2023 13:10:24 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-02 13:24:25.596265
- Title: Interpreting Deep Forest through Feature Contribution and MDI Feature
Importance
- Title(参考訳): 特徴量とmdi特徴量による深い森林の解釈
- Authors: Yi-Xiao He, Shen-Huan Lyu, Yuan Jiang
- Abstract要約: ディープ・フォレストは微分不可能なディープ・モデルであり、様々な応用において印象的な経験的成功を収めた。
アプリケーションフィールドの多くは、各予測に局所的な説明を提供するような特徴のあるランダムフォレストのような説明可能なモデルを好む。
我々は,森林深度に対する特徴貢献とMDI特徴重要度算出ツールを提案する。
- 参考スコア(独自算出の注目度): 6.475147482292634
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep forest is a non-differentiable deep model which has achieved impressive
empirical success across a wide variety of applications, especially on
categorical/symbolic or mixed modeling tasks. Many of the application fields
prefer explainable models, such as random forests with feature contributions
that can provide local explanation for each prediction, and Mean Decrease
Impurity (MDI) that can provide global feature importance. However, deep
forest, as a cascade of random forests, possesses interpretability only at the
first layer. From the second layer on, many of the tree splits occur on the new
features generated by the previous layer, which makes existing explanatory
tools for random forests inapplicable. To disclose the impact of the original
features in the deep layers, we design a calculation method with an estimation
step followed by a calibration step for each layer, and propose our feature
contribution and MDI feature importance calculation tools for deep forest.
Experimental results on both simulated data and real world data verify the
effectiveness of our methods.
- Abstract(参考訳): ディープフォレスト(deep forest)は、非微分可能な深層モデルであり、様々なアプリケーション、特にカテゴリー・シンボリック・混合モデリングタスクで印象的な成功を収めた。
アプリケーション分野の多くは、各予測に局所的な説明を提供するような特徴のあるランダムな森林や、グローバルな特徴の重要性を提供する平均減少不純物(MDI)など、説明可能なモデルを好む。
しかし、深い森林はランダムな森林のカスケードであり、第一層のみに解釈可能である。
第2層から、前層が生成した新機能に多くの木分割が発生するため、既存の無作為林の解説ツールが適用できない。
深層層における原特徴の影響を明らかにするため,各層に対するキャリブレーションステップに続く推定ステップによる計算手法を設計し,深層林における特徴貢献とMDI特徴重要度算出ツールを提案する。
シミュレーションデータと実世界データの両方の実験結果から,本手法の有効性が検証された。
関連論文リスト
- Towards general deep-learning-based tree instance segmentation models [0.0]
木を分割する学習の可能性を示す深層学習法が提案されている。
文献で見られる7つの多様なデータセットを使用して、ドメインシフトの下での一般化能力に関する洞察を得る。
その結果, 針葉樹が支配するスパース点雲から決定的に支配する高分解能点雲への一般化が可能であることが示唆された。
論文 参考訳(メタデータ) (2024-05-03T12:42:43Z) - Exploring Concept Depth: How Large Language Models Acquire Knowledge at Different Layers? [57.04803703952721]
大規模言語モデル(LLM)は、幅広いタスクで顕著なパフォーマンスを示している。
しかし、これらのモデルが様々な複雑さのタスクを符号化するメカニズムは、いまだに理解されていない。
我々は、より複雑な概念が一般的により深い層で取得されることを示すために、概念深さの概念を紹介します。
論文 参考訳(メタデータ) (2024-04-10T14:56:40Z) - Improve Deep Forest with Learnable Layerwise Augmentation Policy
Schedule [22.968268349995853]
本稿では,学習可能な階層的なデータ拡張ポリシを特徴とする最適化されたDeep Forestを提案する。
オーバフィッティングを緩和し,各層に対して拡張強度を調整するための集団探索アルゴリズムを開発するために,タブラルデータ用カットミックス(CMT)拡張技術を導入する。
実験の結果,本手法は様々な分類タスクに新たなSOTA(State-of-the-art)ベンチマークを設定し,浅い樹木のアンサンブル,深い森林,ディープニューラルネットワーク,AutoMLコンペティターを上回る結果を得た。
論文 参考訳(メタデータ) (2023-09-16T15:54:25Z) - ForensicsForest Family: A Series of Multi-scale Hierarchical Cascade Forests for Detecting GAN-generated Faces [53.739014757621376]
我々は,GAN生成顔を検出するために,EmforensicsForest Familyと呼ばれる簡易かつ効果的な森林法について述べる。
ForenscisForestは、新しく提案された多層階層のカスケード林である。
Hybrid ForensicsForestはCNNレイヤをモデルに統合する。
Divide-and-Conquer ForensicsForestは、トレーニングサンプリングの一部のみを使用して、森林モデルを構築することができる。
論文 参考訳(メタデータ) (2023-08-02T06:41:19Z) - Understanding Masked Autoencoders via Hierarchical Latent Variable
Models [109.35382136147349]
Masked Autoencoder (MAE) は近年,様々な視覚タスクにおいて顕著な成功を収めている。
MAEに関する興味深い経験的観察の出現にもかかわらず、理論的に原理化された理解はいまだに欠如している。
論文 参考訳(メタデータ) (2023-06-08T03:00:10Z) - Unboxing Tree Ensembles for interpretability: a hierarchical
visualization tool and a multivariate optimal re-built tree [0.34530027457862006]
我々は,木組モデルの解釈可能な表現を開発し,その振る舞いに関する貴重な洞察を提供する。
提案モデルは,木組決定関数を近似した浅い解釈可能な木を得るのに有効である。
論文 参考訳(メタデータ) (2023-02-15T10:43:31Z) - Multi-Layer Modeling of Dense Vegetation from Aerial LiDAR Scans [4.129847064263057]
私たちはWildForest3Dをリリースしました。これは29の研究プロットと47000m2にまたがる2000以上の個々の木で構成されています。
本稿では,3次元ポイントワイドラベルと高分解能占有メッシュを同時に同時に予測する3次元ディープネットワークアーキテクチャを提案する。
論文 参考訳(メタデータ) (2022-04-25T12:47:05Z) - Manifold Topology Divergence: a Framework for Comparing Data Manifolds [109.0784952256104]
本研究では,深部生成モデルの評価を目的としたデータ多様体の比較フレームワークを開発する。
クロスバーコードに基づき,manifold Topology Divergence score(MTop-Divergence)を導入する。
MTop-Divergenceは,様々なモードドロップ,モード内崩壊,モード発明,画像乱れを正確に検出する。
論文 参考訳(メタデータ) (2021-06-08T00:30:43Z) - Making CNNs Interpretable by Building Dynamic Sequential Decision
Forests with Top-down Hierarchy Learning [62.82046926149371]
本稿では,CNN(Convlutional Neural Networks)を解釈可能なモデル転送方式を提案する。
我々は、CNNの上に微分可能な意思決定林を構築することで、これを実現する。
DDSDF(Dep Dynamic Sequential Decision Forest)と命名する。
論文 参考訳(メタデータ) (2021-06-05T07:41:18Z) - Growing Deep Forests Efficiently with Soft Routing and Learned
Connectivity [79.83903179393164]
この論文は、いくつかの重要な側面で深い森林のアイデアをさらに拡張します。
我々は、ノードがハードバイナリ決定ではなく、確率的ルーティング決定、すなわちソフトルーティングを行う確率的ツリーを採用する。
MNISTデータセットの実験は、私たちの力のある深部森林が[1]、[3]よりも優れたまたは匹敵するパフォーマンスを達成できることを示しています。
論文 参考訳(メタデータ) (2020-12-29T18:05:05Z) - Deep tree-ensembles for multi-output prediction [0.0]
そこで我々は,木埋め込みに基づく表現学習コンポーネントを用いて,各層が元の特徴集合を豊かにする,新しいディープツリーアンサンブル(DTE)モデルを提案する。
具体的には、2つの構造化された出力予測タスク、すなわちマルチラベル分類とマルチターゲット回帰に焦点を当てる。
論文 参考訳(メタデータ) (2020-11-03T16:25:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。