論文の概要: FIREBALL: A Dataset of Dungeons and Dragons Actual-Play with Structured
Game State Information
- arxiv url: http://arxiv.org/abs/2305.01528v3
- Date: Fri, 26 May 2023 01:12:15 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-29 20:13:27.011588
- Title: FIREBALL: A Dataset of Dungeons and Dragons Actual-Play with Structured
Game State Information
- Title(参考訳): FIREBALL:構造化されたゲーム状態情報を備えたダンジョンとドラゴンの実際のプレイデータセット
- Authors: Andrew Zhu and Karmanya Aggarwal and Alexander Feng and Lara J. Martin
and Chris Callison-Burch
- Abstract要約: 本研究では,Discord上の実D&Dゲームプレイから25,000近いセッションを,真のゲーム状態情報とともに格納した大規模データセットFIREBALLを提案する。
我々は,FIREBALLがAvrae状態情報を用いて自然言語生成(NLG)を改善することを実証した。
- 参考スコア(独自算出の注目度): 75.201485544517
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Dungeons & Dragons (D&D) is a tabletop roleplaying game with complex natural
language interactions between players and hidden state information. Recent work
has shown that large language models (LLMs) that have access to state
information can generate higher quality game turns than LLMs that use dialog
history alone. However, previous work used game state information that was
heuristically created and was not a true gold standard game state. We present
FIREBALL, a large dataset containing nearly 25,000 unique sessions from real
D&D gameplay on Discord with true game state info. We recorded game play
sessions of players who used the Avrae bot, which was developed to aid people
in playing D&D online, capturing language, game commands and underlying game
state information. We demonstrate that FIREBALL can improve natural language
generation (NLG) by using Avrae state information, improving both automated
metrics and human judgments of quality. Additionally, we show that LLMs can
generate executable Avrae commands, particularly after finetuning.
- Abstract(参考訳): Dungeons & Dragons(ダンジョンズ&ドラゴンズ、D&D)は、プレイヤー間の複雑な自然言語インタラクションと隠れ状態情報を備えたテーブルトップロールプレイングゲームである。
近年の研究では、状態情報にアクセス可能な大規模言語モデル(LLM)が、ダイアログ履歴のみを使用するLLMよりも高品質なゲームターンを生成できることが示されている。
しかし、前作ではヒューリスティックに作成され、真の金の標準的なゲーム状態ではなかったゲーム状態情報を使用していた。
fireballは,実際のd&dゲームプレイから,真のゲーム状態情報とともに25,000近いユニークなセッションを含む,大規模なデータセットです。
Avraeボットは、人々がD&Dをオンラインでプレイし、言語、ゲームコマンド、そして基礎となるゲーム状態情報をキャプチャするのを助けるために開発された。
本稿では,avrae状態情報を用いて,自動計測と品質判断の両方を改善し,自然言語生成(nlg)を改善できることを実証する。
さらに,LLMは,特に微調整後に実行可能なAvraeコマンドを生成することができることを示す。
関連論文リスト
- Understanding Players as if They Are Talking to the Game in a Customized Language: A Pilot Study [3.4333699338998693]
本研究は,ゲームイベントシーケンスのモデル化における言語モデル(LM)の適用について検討する。
生イベントデータをテキストシーケンスに変換し、このデータ上でLongformerモデルを事前学習する。
これらの結果から,ゲームデザインやパーソナライズにおける自己監督型LMの可能性を示す。
論文 参考訳(メタデータ) (2024-10-24T09:59:10Z) - Instruction-Driven Game Engine: A Poker Case Study [53.689520884467065]
IDGEプロジェクトは、大規模言語モデルで自由形式のゲーム記述を追従し、ゲームプレイプロセスを生成することにより、ゲーム開発を民主化することを目的としている。
我々は、複雑なシナリオへの露出を徐々に増大させるカリキュラム方式でIDGEを訓練する。
我々の最初の進歩はポーカーのIDGEの開発であり、これは幅広いポーカーの変種をサポートするだけでなく、自然言語入力を通じて高度に個別化された新しいポーカーゲームを可能にする。
論文 参考訳(メタデータ) (2024-10-17T11:16:27Z) - Instruction-Driven Game Engines on Large Language Models [59.280666591243154]
IDGEプロジェクトは、大規模な言語モデルが自由形式のゲームルールに従うことを可能にすることで、ゲーム開発を民主化することを目的としている。
我々は、複雑なシナリオに対するモデルの露出を徐々に増大させるカリキュラム方式でIDGEを訓練する。
私たちの最初の進歩は、汎用的なカードゲームであるPoker用のIDGEを開発することです。
論文 参考訳(メタデータ) (2024-03-30T08:02:16Z) - CALYPSO: LLMs as Dungeon Masters' Assistants [46.61924662589895]
大規模言語モデル(LLM)は、一貫性のある自然言語テキストを生成する優れた能力を示している。
本稿では,LCMを利用したインタフェースシステムであるCALYPSOについて紹介する。
CALYPSOへのアクセスが認められたとき、DMはプレイヤーへの直接のプレゼンテーションに適した高忠実なテキストを生成し、DMがクリエイティブエージェンシーを維持しながらさらに発展できるという低忠実なアイデアを作成したと報告した。
論文 参考訳(メタデータ) (2023-08-15T02:57:00Z) - Can Large Language Models Play Text Games Well? Current State-of-the-Art
and Open Questions [22.669941641551823]
ChatGPT や GPT-4 のような大規模言語モデル (LLM) は、最近、人間のユーザと通信する顕著な能力を示した。
我々は,ゲームの世界と対話することで,プレイヤが環境を理解し,状況に対処しなければならないような,テキストゲームをプレイする能力について調査する。
実験の結果,ChatGPTは既存のシステムと比較して競争力があるものの,知能のレベルは低いことがわかった。
論文 参考訳(メタデータ) (2023-04-06T05:01:28Z) - Promptable Game Models: Text-Guided Game Simulation via Masked Diffusion
Models [68.85478477006178]
ニューラルビデオゲームシミュレータのためのPGM(Promptable Game Model)を提案する。
ユーザーは高レベルのアクションシーケンスと低レベルのアクションシーケンスでゲームを実行することができる。
私たちのPGMは、エージェントの目標をプロンプトの形で指定することで、ディレクターのモードをアンロックします。
提案手法は,既存のニューラルビデオゲームシミュレータのレンダリング品質を著しく上回り,現在の最先端の能力を超えたアプリケーションをアンロックする。
論文 参考訳(メタデータ) (2023-03-23T17:43:17Z) - Level Generation Through Large Language Models [3.620115940532283]
大きな言語モデル(LLM)は、自然言語によるトレーニングを活用して、ストーリーを書いたり、コードを作ったり、質問に答えることのできる強力なツールです。
しかし、彼らは機能的なビデオゲームレベルを生成できるだろうか?
複雑な機能的制約と1次元以上の空間的関係を持つゲームレベルは、LLMがトレーニング中に一般的に見るデータの種類とは大きく異なる。
ゲーム「ソコバン」のレベル生成におけるLLMの使用について検討し、LLMが実際に実現可能であること、およびデータセットサイズとともにその性能が劇的に拡大していることを見出した。
論文 参考訳(メタデータ) (2023-02-11T23:34:42Z) - Infusing Commonsense World Models with Graph Knowledge [89.27044249858332]
オープンワールドテキストアドベンチャーゲームにおける物語生成の設定について検討する。
基礎となるゲーム状態のグラフ表現は、接地グラフ表現と自然言語記述とアクションの両方を消費し出力するモデルを訓練するために使用することができる。
論文 参考訳(メタデータ) (2023-01-13T19:58:27Z) - Dungeons and Dragons as a Dialog Challenge for Artificial Intelligence [28.558934742150022]
我々はD&Dを対話システムチャレンジとみなし、ゲーム内の次の会話のターンを生成し、対話履歴が与えられたゲームの状態を予測する。
約900のゲームで構成され、合計7000人のプレーヤー、80万の対話ターン、50万のダイスロール、58万の単語からなるゲームプレイデータセットを作成します。
我々は、大きな言語モデル(LM)を訓練し、異なる情報に基づいて次のゲームターンを生成する。
論文 参考訳(メタデータ) (2022-10-13T15:43:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。