論文の概要: Clinical Note Generation from Doctor-Patient Conversations using Large
Language Models: Insights from MEDIQA-Chat
- arxiv url: http://arxiv.org/abs/2305.02220v1
- Date: Wed, 3 May 2023 15:58:28 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-04 14:06:23.340710
- Title: Clinical Note Generation from Doctor-Patient Conversations using Large
Language Models: Insights from MEDIQA-Chat
- Title(参考訳): 大規模言語モデルを用いた博士論文からの臨床ノートの作成:MEDIQA-Chatからの考察
- Authors: John Giorgi, Augustin Toma, Ronald Xie, Sondra Chen, Kevin R. An,
Grace X. Zheng, Bo Wang
- Abstract要約: 我々はMEDIQA-Chat 2023の共有タスクを医師と患者との会話から自動的な臨床ノート作成のために提出した。
本稿では,共有タスクデータに事前学習言語モデル(PLM)を1つ,大言語モデル(LLM)を2つ導入し,その2つについて報告する。
専門家の人間の精査は、ICLベースのGPT-4によるアプローチによって生成されたメモが、人間によるメモと同じくらい頻繁に好まれていることを示している。
- 参考スコア(独自算出の注目度): 2.3608256778747565
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper describes our submission to the MEDIQA-Chat 2023 shared task for
automatic clinical note generation from doctor-patient conversations. We report
results for two approaches: the first fine-tunes a pre-trained language model
(PLM) on the shared task data, and the second uses few-shot in-context learning
(ICL) with a large language model (LLM). Both achieve high performance as
measured by automatic metrics (e.g. ROUGE, BERTScore) and ranked second and
first, respectively, of all submissions to the shared task. Expert human
scrutiny indicates that notes generated via the ICL-based approach with GPT-4
are preferred about as often as human-written notes, making it a promising path
toward automated note generation from doctor-patient conversations.
- Abstract(参考訳): 本稿では,MEDIQA-Chat 2023の共有課題として,医師と患者との会話から自動臨床ノート作成を行う。
本稿では,共有タスクデータ上に事前学習された言語モデル(PLM)を第1に微調整し,第2に大規模言語モデル(LLM)を用いたICLを用いた。
どちらも、自動メトリクス(ROUGE、BERTScoreなど)によって測定されたハイパフォーマンスを実現し、共有タスクへの全サブミッションのそれぞれ第2と第1のランク付けを行う。
専門家による精査では、ICLベースのGPT-4によるノート作成は、医師と患者の会話から自動メモ生成への道のりとして、人間書きのメモよりも好まれている。
関連論文リスト
- LlaMADRS: Prompting Large Language Models for Interview-Based Depression Assessment [75.44934940580112]
LlaMADRSは、オープンソースのLarge Language Models(LLM)を利用して、うつ病の重症度評価を自動化する新しいフレームワークである。
本研究は,クリニカルインタヴューの解釈・スコアリングにおけるモデル指導のために,慎重に設計された手がかりを用いたゼロショットプロンプト戦略を用いている。
実世界における236件のインタビューを対象とし,臨床評価と強い相関性を示した。
論文 参考訳(メタデータ) (2025-01-07T08:49:04Z) - CLINICSUM: Utilizing Language Models for Generating Clinical Summaries from Patient-Doctor Conversations [2.77462589810782]
クリニックサムは、患者と医師の会話から臨床要約を自動的に生成するように設計されたフレームワークである。
自動測定(ROUGE、BERTScoreなど)と専門家による評価によって評価される。
論文 参考訳(メタデータ) (2024-12-05T15:34:02Z) - Improving Clinical Note Generation from Complex Doctor-Patient Conversation [20.2157016701399]
大言語モデル(LLM)を用いた臨床ノート作成分野への3つの重要な貢献について述べる。
まず、CliniKnoteを紹介します。CliniKnoteは、1200の複雑な医師と患者との会話と、その全臨床ノートを組み合わせたデータセットです。
第2に,従来のSOAPcitepodder20soap(Subjective, Objective, Assessment, Plan)のメモを上位にキーワードセクションを追加することで,必須情報の迅速な識別を可能にするK-SOAPを提案する。
第3に、医師と患者との会話からK-SOAPノートを生成する自動パイプラインを開発し、様々な近代LCMをベンチマークする。
論文 参考訳(メタデータ) (2024-08-26T18:39:31Z) - Enhancing Summarization Performance through Transformer-Based Prompt
Engineering in Automated Medical Reporting [0.49478969093606673]
2ショットプロンプトアプローチとスコープとドメインコンテキストの組み合わせは、他のメソッドよりも優れています。
自動化されたレポートは、人間の参照の約2倍の長さである。
論文 参考訳(メタデータ) (2023-11-22T09:51:53Z) - GersteinLab at MEDIQA-Chat 2023: Clinical Note Summarization from
Doctor-Patient Conversations through Fine-tuning and In-context Learning [4.2570830892708225]
本稿では,サブタスクAとサブタスクBの両方を含む,MEDIQA-2023 Dialogue2Note共有タスクへのコントリビューションについて述べる。
本稿では,対話要約問題としてタスクにアプローチし,a)事前学習した対話要約モデルとGPT-3の微調整,およびb)大規模言語モデルであるGPT-4を用いた少数ショットインコンテキスト学習(ICL)の2つのパイプラインを実装した。
どちらの方法もROUGE-1 F1、BERTScore F1(deberta-xlarge-mnli)、BLEURTで優れた結果が得られる。
論文 参考訳(メタデータ) (2023-05-08T19:16:26Z) - PMC-LLaMA: Towards Building Open-source Language Models for Medicine [62.39105735933138]
大規模言語モデル(LLM)は、自然言語理解において顕著な能力を示した。
LLMは、ドメイン固有の知識が不足しているため、医学的応用のような正確性を必要とする領域で苦労している。
PMC-LLaMAと呼ばれる医療応用に特化した強力なオープンソース言語モデルの構築手順について述べる。
論文 参考訳(メタデータ) (2023-04-27T18:29:05Z) - A Benchmark for Automatic Medical Consultation System: Frameworks, Tasks
and Datasets [70.32630628211803]
本稿では,医師と患者との対話理解とタスク指向インタラクションという,医療相談の自動化を支援する2つの枠組みを提案する。
マルチレベルな微粒なアノテーションを付加した新しい大規模医療対話データセットが導入された。
本稿では,各タスクに対するベンチマーク結果のセットを報告し,データセットのユーザビリティを示し,今後の研究のベースラインを設定する。
論文 参考訳(メタデータ) (2022-04-19T16:43:21Z) - Human Evaluation and Correlation with Automatic Metrics in Consultation
Note Generation [56.25869366777579]
近年,機械学習モデルによる臨床相談ノートの作成が急速に進んでいる。
5人の臨床医が57件のモック・コンサルテーションを聴き、自作のノートを書き、自動的に生成されたノートを編集し、全てのエラーを抽出する、広範囲にわたる人的評価研究を行った。
単純な文字ベースのLevenshtein距離測定は、BertScoreのような一般的なモデルベースの測定値に比較して、同等に動作します。
論文 参考訳(メタデータ) (2022-04-01T14:04:16Z) - Self-supervised Answer Retrieval on Clinical Notes [68.87777592015402]
本稿では,ドメイン固有パスマッチングのためのトランスフォーマー言語モデルをトレーニングするためのルールベースのセルフスーパービジョンであるCAPRを紹介する。
目的をトランスフォーマーベースの4つのアーキテクチャ、コンテキスト文書ベクトル、ビ-、ポリエンコーダ、クロスエンコーダに適用する。
本稿では,ドメイン固有パスの検索において,CAPRが強いベースラインを上回り,ルールベースおよび人間ラベル付きパスを効果的に一般化することを示す。
論文 参考訳(メタデータ) (2021-08-02T10:42:52Z) - MedDG: An Entity-Centric Medical Consultation Dataset for Entity-Aware
Medical Dialogue Generation [86.38736781043109]
MedDGという12種類の消化器疾患に関連する大規模医用対話データセットを構築し,公開する。
MedDGデータセットに基づく2種類の医療対話タスクを提案する。1つは次のエンティティ予測であり、もう1つは医師の反応生成である。
実験結果から,プレトレイン言語モデルと他のベースラインは,両方のタスクに苦戦し,データセットの性能が劣ることがわかった。
論文 参考訳(メタデータ) (2020-10-15T03:34:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。