Hybrid quantum learning with data re-uploading on a small-scale
superconducting quantum simulator
- URL: http://arxiv.org/abs/2305.02956v2
- Date: Wed, 10 Jan 2024 08:25:23 GMT
- Title: Hybrid quantum learning with data re-uploading on a small-scale
superconducting quantum simulator
- Authors: Aleksei Tolstobrov, Gleb Fedorov, Shtefan Sanduleanu, Shamil
Kadyrmetov, Andrei Vasenin, Aleksey Bolgar, Daria Kalacheva, Viktor Lubsanov,
Aleksandr Dorogov, Julia Zotova, Peter Shlykov, Aleksei Dmitriev, Konstantin
Tikhonov, Oleg V. Astafiev
- Abstract summary: Supervised quantum learning is an emergent multidisciplinary domain bridging between variational quantum algorithms and classical machine learning.
We train a quantum circuit on simple binary and multi-label tasks, achieving classification accuracy around 95%, and a hybrid model with data re-uploading with accuracy around 90% when recognizing handwritten decimal digits.
- Score: 29.81784450632149
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Supervised quantum learning is an emergent multidisciplinary domain bridging
between variational quantum algorithms and classical machine learning. Here, we
study experimentally a hybrid classifier model accelerated by a quantum
simulator - a linear array of four superconducting transmon artificial atoms -
trained to solve multilabel classification and image recognition problems. We
train a quantum circuit on simple binary and multi-label tasks, achieving
classification accuracy around 95%, and a hybrid model with data re-uploading
with accuracy around 90% when recognizing handwritten decimal digits. Finally,
we analyze the inference time in experimental conditions and compare the
performance of the studied quantum model with known classical solutions.
Related papers
- Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
Given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties?
We prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d.
We devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to scaling in many practical settings.
arXiv Detail & Related papers (2024-08-22T08:21:28Z) - Supervised binary classification of small-scale digits images with a trapped-ion quantum processor [56.089799129458875]
We show that a quantum processor can correctly solve the basic classification task considered.
With the increase of the capabilities quantum processors, they can become a useful tool for machine learning.
arXiv Detail & Related papers (2024-06-17T18:20:51Z) - Enhancing variational Monte Carlo using a programmable quantum simulator [0.3078264203938486]
We show that projective measurement data can be used to enhance in silico simulations of quantum matter.
We employ data-enhanced variational Monte Carlo to train powerful autoregressive wavefunction ans"atze based on recurrent neural networks.
Our work highlights the promise of hybrid quantum--classical approaches for large-scale simulation of quantum many-body systems.
arXiv Detail & Related papers (2023-08-04T18:08:49Z) - Quantum machine learning for image classification [39.58317527488534]
This research introduces two quantum machine learning models that leverage the principles of quantum mechanics for effective computations.
Our first model, a hybrid quantum neural network with parallel quantum circuits, enables the execution of computations even in the noisy intermediate-scale quantum era.
A second model introduces a hybrid quantum neural network with a Quanvolutional layer, reducing image resolution via a convolution process.
arXiv Detail & Related papers (2023-04-18T18:23:20Z) - The Quantum Path Kernel: a Generalized Quantum Neural Tangent Kernel for
Deep Quantum Machine Learning [52.77024349608834]
Building a quantum analog of classical deep neural networks represents a fundamental challenge in quantum computing.
Key issue is how to address the inherent non-linearity of classical deep learning.
We introduce the Quantum Path Kernel, a formulation of quantum machine learning capable of replicating those aspects of deep machine learning.
arXiv Detail & Related papers (2022-12-22T16:06:24Z) - Quantum emulation of the transient dynamics in the multistate
Landau-Zener model [50.591267188664666]
We study the transient dynamics in the multistate Landau-Zener model as a function of the Landau-Zener velocity.
Our experiments pave the way for more complex simulations with qubits coupled to an engineered bosonic mode spectrum.
arXiv Detail & Related papers (2022-11-26T15:04:11Z) - Time-Optimal Quantum Driving by Variational Circuit Learning [2.9582851733261286]
Digital quantum simulation and hybrid circuit learning opens up new prospects for quantum optimal control.
We simulate the wave-packet expansion of a trapped quantum particle on a quantum device with a finite number qubits.
We discuss the robustness of our method against errors and demonstrate the absence of barren plateaus in the circuit.
arXiv Detail & Related papers (2022-11-01T11:53:49Z) - Multiclass classification using quantum convolutional neural networks
with hybrid quantum-classical learning [0.5999777817331318]
We propose a quantum machine learning approach based on quantum convolutional neural networks for solving multiclass classification problems.
We use the proposed approach to demonstrate the 4-class classification for the case of the MNIST dataset using eight qubits for data encoding and four acnilla qubits.
Our results demonstrate comparable accuracy of our solution with classical convolutional neural networks with comparable numbers of trainable parameters.
arXiv Detail & Related papers (2022-03-29T09:07:18Z) - Simulating the Mott transition on a noisy digital quantum computer via
Cartan-based fast-forwarding circuits [62.73367618671969]
Dynamical mean-field theory (DMFT) maps the local Green's function of the Hubbard model to that of the Anderson impurity model.
Quantum and hybrid quantum-classical algorithms have been proposed to efficiently solve impurity models.
This work presents the first computation of the Mott phase transition using noisy digital quantum hardware.
arXiv Detail & Related papers (2021-12-10T17:32:15Z) - Information Scrambling in Computationally Complex Quantum Circuits [56.22772134614514]
We experimentally investigate the dynamics of quantum scrambling on a 53-qubit quantum processor.
We show that while operator spreading is captured by an efficient classical model, operator entanglement requires exponentially scaled computational resources to simulate.
arXiv Detail & Related papers (2021-01-21T22:18:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.