Relativistic locality can imply subsystem locality
- URL: http://arxiv.org/abs/2305.05645v1
- Date: Tue, 9 May 2023 17:43:28 GMT
- Title: Relativistic locality can imply subsystem locality
- Authors: Andrea Di Biagio, Richard Howl, Caslav Brukner, Carlo Rovelli, Marios
Christodoulou
- Abstract summary: Locality is a central notion in modern physics, but different disciplines understand it in different ways.
We investigate how microcausality and subsystem locality are related.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Locality is a central notion in modern physics, but different disciplines
understand it in different ways. Quantum field theory focusses on relativistic
locality, enforced by microcausality, while quantum information theory focuses
on subsystem locality, which regulates how information and causal influences
propagate in a system, with no direct reference to spacetime notions. Here we
investigate how microcausality and subsystem locality are related. The question
is relevant for understanding whether it is possible to formulate quantum field
theory in quantum information language, and has bearing on the recent
discussions on low-energy tests of quantum gravity. We present a first result
in this direction: in the quantum dynamics of a massive scalar quantum field
coupled to two localised systems, microcausality implies subsystem locality in
a physically relevant approximation.
Related papers
- To be or not to be, but where? [0.0]
Traditional approaches associate quantum systems with classical ones localized in spacetime.
canonical linearized quantum gravity disrupts this framework by preventing the formation of gauge-in-variant local algebras.
This presents a major obstacle for modeling early universe cosmology, gravity-entanglement experiments, and poses a significant roadblock toward a comprehensive theory of quantum gravity.
arXiv Detail & Related papers (2024-05-31T17:22:39Z) - Embezzling entanglement from quantum fields [41.94295877935867]
Embezzlement of entanglement refers to the counterintuitive possibility of extracting entangled quantum states from a reference state of an auxiliary system.
We uncover a deep connection between the operational task of embezzling entanglement and the mathematical classification of von Neumann algebras.
arXiv Detail & Related papers (2024-01-14T13:58:32Z) - Local Purity Distillation in Quantum Systems: Exploring the Complementarity Between Purity and Entanglement [41.94295877935867]
We introduce and develop the framework of Gibbs-preserving local operations and classical communication.
We focus on systems with fully degenerate local Hamiltonians, where local cooling aligns with the extraction of local purity.
Our findings open doors to various practical applications, including techniques for entanglement detection and estimation.
arXiv Detail & Related papers (2023-11-20T14:58:31Z) - A new indeterminacy-based quantum theory [0.0]
I propose a novel interpretation of quantum theory, which I will call Environmental Determinacy-based (EnDQT)
Unlike theories such as spontaneous collapse theories, no modifications of the fundamental equations of quantum theory are required to establish when determinate values arise.
EnDQT may provide payoffs to other areas of physics and their foundations, such as cosmology.
arXiv Detail & Related papers (2023-10-06T04:05:38Z) - Quantifying High-Order Interdependencies in Entangled Quantum States [43.70611649100949]
We introduce the Q-information: an information-theoretic measure capable of distinguishing quantum states dominated by synergy or redundancy.
We show that quantum systems need at least four variables to exhibit high-order properties.
Overall, the Q-information sheds light on novel aspects of the internal organisation of quantum systems and their time evolution.
arXiv Detail & Related papers (2023-10-05T17:00:13Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - Principle of information causality rationalizes quantum composition [0.0]
We show that the principle of information causality, a generalization of no signaling principle, plays significant role to this aim.
In accordance with no-signaling condition, state and effect spaces of a composite system can allow different possible mathematical descriptions.
arXiv Detail & Related papers (2022-08-30T05:41:42Z) - Local Quantum Theory with Fluids in Space-Time [0.0]
An explicit, unambiguous, and Lorentz-covariant 'local hidden variable theory' in space-time is presented.
There is no inconsistency with Bell's theorem because this a local many-worlds theory.
The experience of collapse, Born rule probability, and environmental decoherence are discussed.
arXiv Detail & Related papers (2021-07-14T09:31:17Z) - Information Scrambling in Computationally Complex Quantum Circuits [56.22772134614514]
We experimentally investigate the dynamics of quantum scrambling on a 53-qubit quantum processor.
We show that while operator spreading is captured by an efficient classical model, operator entanglement requires exponentially scaled computational resources to simulate.
arXiv Detail & Related papers (2021-01-21T22:18:49Z) - Operational Resource Theory of Imaginarity [48.7576911714538]
We show that quantum states are easier to create and manipulate if they only have real elements.
As an application, we show that imaginarity plays a crucial role for state discrimination.
arXiv Detail & Related papers (2020-07-29T14:03:38Z) - Localizable quantum coherence [0.0]
Coherence is a fundamental notion in quantum mechanics, defined relative to a reference basis.
We put forward a notion of localizable coherence as the coherence that can be stored in a particular subsystem.
We show that it can be applied to reveal the real-space structure of states of interest in quantum many-body theory.
arXiv Detail & Related papers (2020-05-06T17:44:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.