論文の概要: Towards Better Graph Representation Learning with Parameterized
Decomposition & Filtering
- arxiv url: http://arxiv.org/abs/2305.06102v1
- Date: Wed, 10 May 2023 12:42:31 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-11 13:10:09.328438
- Title: Towards Better Graph Representation Learning with Parameterized
Decomposition & Filtering
- Title(参考訳): パラメータ化分解・フィルタリングによるグラフ表現学習の改善に向けて
- Authors: Mingqi Yang, Wenjie Feng, Yanming Shen, Bryan Hooi
- Abstract要約: 我々は,既存のGNNモデルを統一した,新規で汎用的なフレームワークを開発する。
既存のモデルのスムーズさと増幅問題を緩和しつつ、GNNの柔軟性を高めるのにどのように役立つかを示す。
- 参考スコア(独自算出の注目度): 27.374515964364814
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Proposing an effective and flexible matrix to represent a graph is a
fundamental challenge that has been explored from multiple perspectives, e.g.,
filtering in Graph Fourier Transforms. In this work, we develop a novel and
general framework which unifies many existing GNN models from the view of
parameterized decomposition and filtering, and show how it helps to enhance the
flexibility of GNNs while alleviating the smoothness and amplification issues
of existing models. Essentially, we show that the extensively studied spectral
graph convolutions with learnable polynomial filters are constrained variants
of this formulation, and releasing these constraints enables our model to
express the desired decomposition and filtering simultaneously. Based on this
generalized framework, we develop models that are simple in implementation but
achieve significant improvements and computational efficiency on a variety of
graph learning tasks. Code is available at https://github.com/qslim/PDF.
- Abstract(参考訳): グラフを表現するための効率的で柔軟なマトリックスの提案は、例えばグラフフーリエ変換のフィルタリングなど、複数の視点から検討されてきた基本的な課題である。
本研究では,パラメータ化分解とフィルタリングの観点から,既存のGNNモデルを統一した新しい汎用フレームワークを開発し,既存のモデルの滑らかさと増幅問題を緩和しつつ,GNNの柔軟性を高める方法を示す。
基本的に, 学習可能な多項式フィルタを用いたスペクトルグラフ畳み込みは, この定式化の制約付き変種であり, これらの制約を解除することで, 所望の分解とフィルタリングを同時に表現できることを示す。
この一般化したフレームワークに基づいて,実装は単純だが,様々なグラフ学習タスクにおいて大幅な改善と計算効率を実現するモデルを開発した。
コードはhttps://github.com/qslim/pdfで入手できる。
関連論文リスト
- GrassNet: State Space Model Meets Graph Neural Network [57.62885438406724]
Graph State Space Network (GrassNet)は、任意のグラフスペクトルフィルタを設計するためのシンプルで効果的なスキームを提供する理論的なサポートを持つ、新しいグラフニューラルネットワークである。
我々の知る限り、我々の研究はグラフGNNスペクトルフィルタの設計にSSMを使った最初のものである。
9つの公開ベンチマークでの大規模な実験により、GrassNetは現実世界のグラフモデリングタスクにおいて優れたパフォーマンスを達成することが明らかになった。
論文 参考訳(メタデータ) (2024-08-16T07:33:58Z) - SPGNN: Recognizing Salient Subgraph Patterns via Enhanced Graph Convolution and Pooling [25.555741218526464]
グラフニューラルネットワーク(GNN)は、グラフやネットワークのような非ユークリッドデータ上での機械学習の分野に革命をもたらした。
本稿では,ノード表現をインジェクティブに更新する結合型グラフ畳み込み機構を提案する。
また,WL-SortPoolと呼ばれるグラフプーリングモジュールを設計し,重要なサブグラフパターンをディープラーニングで学習する。
論文 参考訳(メタデータ) (2024-04-21T13:11:59Z) - Automated Polynomial Filter Learning for Graph Neural Networks [9.120531252536617]
グラフニューラルネットワーク(GNN)の設計の指針として多項グラフフィルタが広く用いられている。
近年, グラフフィルタの適応学習により, ホモ親和性グラフとヘテロ親和性グラフの両方において, グラフ信号のモデル化に有望な性能が示された。
本稿では,多種多様なグラフ信号に適応可能な優れたフィルタを効率的に学習する,新規で汎用的なグラフフィルタ学習フレームワークであるAuto-Polynomialを提案する。
論文 参考訳(メタデータ) (2023-07-16T06:14:12Z) - Graph Polynomial Convolution Models for Node Classification of
Non-Homophilous Graphs [52.52570805621925]
本研究では,高階グラフ畳み込みからの効率的な学習と,ノード分類のための隣接行列から直接学習する。
得られたモデルが新しいグラフと残留スケーリングパラメータをもたらすことを示す。
提案手法は,非親和性パラメータのノード分類における精度の向上を実証する。
論文 参考訳(メタデータ) (2022-09-12T04:46:55Z) - A Piece-wise Polynomial Filtering Approach for Graph Neural Networks [0.45298395481707365]
グラフニューラルネットワーク(GNN)は、ノードの特徴と入力グラフトポロジからの信号を利用して、ノード分類タスクのパフォーマンスを向上させる。
これらのモデルは、連結ノードが異なるラベルを持つヘテロ親和性グラフ上では性能が良くない傾向にある。
提案モデルでは,最先端モデルに対して最大5%の性能向上を実現し,従来のフィルタ方式よりも優れた性能を示す。
論文 参考訳(メタデータ) (2021-12-07T05:16:53Z) - Graph Neural Networks with Adaptive Frequency Response Filter [55.626174910206046]
適応周波数応答フィルタを用いたグラフニューラルネットワークフレームワークAdaGNNを開発した。
提案手法の有効性を,様々なベンチマークデータセット上で実証的に検証した。
論文 参考訳(メタデータ) (2021-04-26T19:31:21Z) - Stacked Graph Filter [19.343260981528186]
グラフ信号処理の観点から,グラフ畳み込みネットワーク(GCN)について検討する。
学習可能な解パラメータでグラフフィルタを積み重ねることで、高度に適応的で堅牢なグラフ分類モデルを構築することができる。
論文 参考訳(メタデータ) (2020-11-22T11:20:14Z) - Unrolling of Deep Graph Total Variation for Image Denoising [106.93258903150702]
本稿では,従来のグラフ信号フィルタリングと深い特徴学習を併用して,競合するハイブリッド設計を提案する。
解釈可能な低パスグラフフィルタを用い、最先端のDL復調方式DnCNNよりも80%少ないネットワークパラメータを用いる。
論文 参考訳(メタデータ) (2020-10-21T20:04:22Z) - Data-Driven Learning of Geometric Scattering Networks [74.3283600072357]
最近提案された幾何散乱変換の緩和に基づく新しいグラフニューラルネットワーク(GNN)モジュールを提案する。
我々の学習可能な幾何散乱(LEGS)モジュールは、ウェーブレットの適応的なチューニングを可能にし、学習された表現に帯域通過の特徴が現れるように促す。
論文 参考訳(メタデータ) (2020-10-06T01:20:27Z) - Revisiting Graph based Collaborative Filtering: A Linear Residual Graph
Convolutional Network Approach [55.44107800525776]
グラフ畳み込みネットワーク(GCN)は、最先端のグラフベースの表現学習モデルである。
本稿では、GCNベースの協調フィルタリング(CF)ベースのレコメンダシステム(RS)について再検討する。
単純なグラフ畳み込みネットワークの理論と整合して,非線形性を取り除くことで推奨性能が向上することを示す。
本稿では,ユーザ・イテム相互作用モデリングを用いたCF用に特別に設計された残差ネットワーク構造を提案する。
論文 参考訳(メタデータ) (2020-01-28T04:41:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。