A Full Quantum Generative Adversarial Network Model for High Energy Physics Simulations
- URL: http://arxiv.org/abs/2305.07284v2
- Date: Mon, 29 Apr 2024 13:13:16 GMT
- Title: A Full Quantum Generative Adversarial Network Model for High Energy Physics Simulations
- Authors: Florian Rehm, Sofia Vallecorsa, Michele Grossi, Kerstin Borras, Dirk Krücker,
- Abstract summary: We develop a quantum Generative Adversarial Network (GAN) model for generating downsized eight-pixel calorimeter shower images.
The advantage over previous quantum models is that the model generates real individual images containing pixel energy values.
Results of the full quantum GAN model are compared to hybrid quantum-classical models using a classical discriminator neural network.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The prospect of quantum computing with a potential exponential speed-up compared to classical computing identifies it as a promising method in the search for alternative future High Energy Physics (HEP) simulation approaches. HEP simulations, such as employed at the Large Hadron Collider at CERN, are extraordinarily complex and require an immense amount of computing resources in hardware and time. For some HEP simulations, classical machine learning models have already been successfully developed and tested, resulting in several orders of magnitude speed-up. In this research, we proceed to the next step and explore whether quantum computing can provide sufficient accuracy, and further improvements, suggesting it as an exciting direction of future investigations. With a small prototype model, we demonstrate a full quantum Generative Adversarial Network (GAN) model for generating downsized eight-pixel calorimeter shower images. The advantage over previous quantum models is that the model generates real individual images containing pixel energy values instead of simple probability distributions averaged over a test sample. To complete the picture, the results of the full quantum GAN model are compared to hybrid quantum-classical models using a classical discriminator neural network.
Related papers
- Hybrid Quantum-Classical Normalizing Flow [5.85475369017678]
We propose a hybrid quantum-classical normalizing flow (HQCNF) model based on parameterized quantum circuits.
We test our model on the image generation problem.
Compared with other quantum generative models, such as quantum generative adversarial networks (QGAN), our model achieves lower (better) Fr'echet distance (FID) score.
arXiv Detail & Related papers (2024-05-22T16:37:22Z) - Towards Efficient Quantum Hybrid Diffusion Models [68.43405413443175]
We propose a new methodology to design quantum hybrid diffusion models.
We propose two possible hybridization schemes combining quantum computing's superior generalization with classical networks' modularity.
arXiv Detail & Related papers (2024-02-25T16:57:51Z) - Quantum Denoising Diffusion Models [4.763438526927999]
We introduce two quantum diffusion models and benchmark their capabilities against their classical counterparts.
Our models surpass the classical models with similar parameter counts in terms of performance metrics FID, SSIM, and PSNR.
arXiv Detail & Related papers (2024-01-13T11:38:08Z) - Precise Image Generation on Current Noisy Quantum Computing Devices [0.0]
The Quantum Angle Generator (QAG) is a new full Quantum Machine Learning model designed to generate accurate images on current Noise Intermediate Scale (NISQ) Quantum devices.
Variational quantum circuits form the core of the QAG model, and various circuit architectures are evaluated.
For demonstration, the model is employed in indispensable simulations in high energy physics required to measure particle energies.
arXiv Detail & Related papers (2023-07-11T13:36:05Z) - A Framework for Demonstrating Practical Quantum Advantage: Racing
Quantum against Classical Generative Models [62.997667081978825]
We build over a proposed framework for evaluating the generalization performance of generative models.
We establish the first comparative race towards practical quantum advantage (PQA) between classical and quantum generative models.
Our results suggest that QCBMs are more efficient in the data-limited regime than the other state-of-the-art classical generative models.
arXiv Detail & Related papers (2023-03-27T22:48:28Z) - Simulation of Entanglement Generation between Absorptive Quantum
Memories [56.24769206561207]
We use the open-source Simulator of QUantum Network Communication (SeQUeNCe), developed by our team, to simulate entanglement generation between two atomic frequency comb (AFC) absorptive quantum memories.
We realize the representation of photonic quantum states within truncated Fock spaces in SeQUeNCe.
We observe varying fidelity with SPDC source mean photon number, and varying entanglement generation rate with both mean photon number and memory mode number.
arXiv Detail & Related papers (2022-12-17T05:51:17Z) - Tensor Network Quantum Virtual Machine for Simulating Quantum Circuits
at Exascale [57.84751206630535]
We present a modernized version of the Quantum Virtual Machine (TNQVM) which serves as a quantum circuit simulation backend in the e-scale ACCelerator (XACC) framework.
The new version is based on the general purpose, scalable network processing library, ExaTN, and provides multiple quantum circuit simulators.
By combining the portable XACC quantum processors and the scalable ExaTN backend we introduce an end-to-end virtual development environment which can scale from laptops to future exascale platforms.
arXiv Detail & Related papers (2021-04-21T13:26:42Z) - Quantum Generative Adversarial Networks in a Continuous-Variable
Architecture to Simulate High Energy Physics Detectors [0.0]
We introduce and analyze a new prototype of quantum GAN (qGAN) employed in continuous-variable quantum computing.
Two CV qGAN models with a quantum and a classical discriminator have been tested to reproduce calorimeter outputs in a reduced size.
arXiv Detail & Related papers (2021-01-26T23:33:14Z) - Generation of High-Resolution Handwritten Digits with an Ion-Trap
Quantum Computer [55.41644538483948]
We implement a quantum-circuit based generative model to learn and sample the prior distribution of a Generative Adversarial Network.
We train this hybrid algorithm on an ion-trap device based on $171$Yb$+$ ion qubits to generate high-quality images.
arXiv Detail & Related papers (2020-12-07T18:51:28Z) - Experimental Quantum Generative Adversarial Networks for Image
Generation [93.06926114985761]
We experimentally achieve the learning and generation of real-world hand-written digit images on a superconducting quantum processor.
Our work provides guidance for developing advanced quantum generative models on near-term quantum devices.
arXiv Detail & Related papers (2020-10-13T06:57:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.