Visualizing Entanglement in multi-Qubit Systems
- URL: http://arxiv.org/abs/2305.07596v4
- Date: Sun, 18 Feb 2024 16:02:15 GMT
- Title: Visualizing Entanglement in multi-Qubit Systems
- Authors: Jonas Bley, Eva Rexigel, Alda Arias, Nikolas Longen, Lars Krupp,
Maximilian Kiefer-Emmanouilidis, Paul Lukowicz, Anna Donhauser, Stefan
K\"uchemann, Jochen Kuhn, and Artur Widera
- Abstract summary: We utilize the dimensional circle notation as a representation of ensembles of few qubits.
We show that the mathematical conditions for separability lead to symmetry conditions of the quantum state visualized.
- Score: 1.7788938361329507
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: In the field of quantum information science and technology, the
representation and visualization of quantum states and related processes are
essential for both research and education. In this context, a focus especially
lies on ensembles of few qubits. There exist many powerful representations for
single-qubit and multi-qubit systems, such as the famous Bloch sphere and
generalizations. Here, we utilize the dimensional circle notation as a
representation of such ensembles, adapting the so-called circle notation of
qubits and the idea of representing the n-particle system in an n-dimensional
space. We show that the mathematical conditions for separability lead to
symmetry conditions of the quantum state visualized, offering a new perspective
on entanglement in few-qubit systems and therefore on various quantum
algorithms. In this way, dimensional notations promise significant potential
for conveying nontrivial quantum entanglement properties and processes in
few-qubit systems to a broader audience, and could enhance understanding of
these concepts as a bridge between intuitive quantum insight and formal
mathematical descriptions.
Related papers
- An explicit tensor notation for quantum computing [0.0]
This paper introduces a formalism that aims to describe the intricacies of quantum computation.
The focus is on providing a comprehensive representation of quantum states for multiple qubits and the quantum gates that manipulate them.
arXiv Detail & Related papers (2024-09-16T17:21:17Z) - Introduction to quantum entanglement in many-body systems [0.0]
The purpose of this chapter is to give a pedagogical introduction to the topic with a special emphasis on the multipartite scenario.
We start by providing the necessary mathematical tools and elementary concepts from entanglement theory.
Then, we focus on various entanglement structures useful in condensed-matter theory such as tensor-network states or symmetric states useful for quantum-enhanced sensing.
arXiv Detail & Related papers (2024-02-14T19:01:10Z) - Realization of quantum algorithms with qudits [0.7892577704654171]
We review several ideas indicating how multilevel quantum systems, also known as qudits, can be used for efficient realization of quantum algorithms.
We focus on techniques of leveraging qudits for simplifying decomposition of multiqubit gates, and for compressing quantum information by encoding multiple qubits in a single qudit.
These theoretical schemes can be implemented with quantum computing platforms of various nature, such as trapped ions, neutral atoms, superconducting junctions, and quantum light.
arXiv Detail & Related papers (2023-11-20T18:34:19Z) - Quantifying High-Order Interdependencies in Entangled Quantum States [43.70611649100949]
We introduce the Q-information: an information-theoretic measure capable of distinguishing quantum states dominated by synergy or redundancy.
We show that quantum systems need at least four variables to exhibit high-order properties.
Overall, the Q-information sheds light on novel aspects of the internal organisation of quantum systems and their time evolution.
arXiv Detail & Related papers (2023-10-05T17:00:13Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - A thorough introduction to non-relativistic matrix mechanics in
multi-qudit systems with a study on quantum entanglement and quantum
quantifiers [0.0]
This article provides a deep and abiding understanding of non-relativistic matrix mechanics.
We derive and analyze the respective 1-qubit, 1-qutrit, 2-qubit, and 2-qudit coherent and incoherent density operators.
We also address the fundamental concepts of quantum nondemolition measurements, quantum decoherence and, particularly, quantum entanglement.
arXiv Detail & Related papers (2021-09-14T05:06:47Z) - Efficient criteria of quantumness for a large system of qubits [58.720142291102135]
We discuss the dimensionless combinations of basic parameters of large, partially quantum coherent systems.
Based on analytical and numerical calculations, we suggest one such number for a system of qubits undergoing adiabatic evolution.
arXiv Detail & Related papers (2021-08-30T23:50:05Z) - Information Scrambling in Computationally Complex Quantum Circuits [56.22772134614514]
We experimentally investigate the dynamics of quantum scrambling on a 53-qubit quantum processor.
We show that while operator spreading is captured by an efficient classical model, operator entanglement requires exponentially scaled computational resources to simulate.
arXiv Detail & Related papers (2021-01-21T22:18:49Z) - Entanglement transfer, accumulation and retrieval via quantum-walk-based
qubit-qudit dynamics [50.591267188664666]
Generation and control of quantum correlations in high-dimensional systems is a major challenge in the present landscape of quantum technologies.
We propose a protocol that is able to attain entangled states of $d$-dimensional systems through a quantum-walk-based it transfer & accumulate mechanism.
In particular, we illustrate a possible photonic implementation where the information is encoded in the orbital angular momentum and polarization degrees of freedom of single photons.
arXiv Detail & Related papers (2020-10-14T14:33:34Z) - Entanglement Classification via Neural Network Quantum States [58.720142291102135]
In this paper we combine machine-learning tools and the theory of quantum entanglement to perform entanglement classification for multipartite qubit systems in pure states.
We use a parameterisation of quantum systems using artificial neural networks in a restricted Boltzmann machine (RBM) architecture, known as Neural Network Quantum States (NNS)
arXiv Detail & Related papers (2019-12-31T07:40:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.