論文の概要: On the Computational Cost of Stochastic Security
- arxiv url: http://arxiv.org/abs/2305.07973v1
- Date: Sat, 13 May 2023 17:33:01 GMT
- ステータス: 翻訳完了
- システム内更新日: 2023-05-16 18:31:56.595528
- Title: On the Computational Cost of Stochastic Security
- Title(参考訳): 確率的セキュリティの計算コストについて
- Authors: Noah A. Crum, Leanto Sunny, Pooya Ronagh, Raymond Laflamme,
Radhakrishnan Balu, George Siopsis
- Abstract要約: 本研究では, モンテカルロシミュレーションにおいて, 独立分類器ネットワークの対向ロバスト性および校正スコアを向上させるために, 訓練されたEMMを用いた拡散過程をシミュレーションする手法について考察する。
本研究は, 連続エネルギーポテンシャルからギブズサンプリングを効率よく行うために, 量子・古典ハードウェアとソフトウェアを新たに実現し, モデルのキャリブレーションと対角ロバスト性を向上させることを目的として, ギブズサンプリングの計算予算の増大を図った。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We investigate whether long-run persistent chain Monte Carlo simulation of
Langevin dynamics improves the quality of the representations achieved by
energy-based models (EBM). We consider a scheme wherein Monte Carlo simulation
of a diffusion process using a trained EBM is used to improve the adversarial
robustness and the calibration score of an independent classifier network. Our
results show that increasing the computational budget of Gibbs sampling in
persistent contrastive divergence improves the calibration and adversarial
robustness of the model, elucidating the practical merit of realizing new
quantum and classical hardware and software for efficient Gibbs sampling from
continuous energy potentials.
- Abstract(参考訳): 本稿では,Langevin Dynamicsの長期持続鎖モンテカルロシミュレーションにより,エネルギーベースモデル(EBM)による表現の質が向上するかどうかを考察する。
本研究では,学習したebmを用いた拡散過程のモンテカルロシミュレーションを用いて,独立分類器ネットワークの逆ロバスト性やキャリブレーションスコアを改善する手法を提案する。
本研究は, 連続エネルギーポテンシャルからギブズサンプリングを効率よく行うために, 量子・古典ハードウェアとソフトウェアを新たに実現し, モデルのキャリブレーションと対角ロバスト性を向上させることを目的として, ギブズサンプリングの計算予算の増大を図った。
関連論文リスト
- Practical Application of the Quantum Carleman Lattice Boltzmann Method in Industrial CFD Simulations [44.99833362998488]
この研究は、格子ボルツマン法(LBM)に基づくCFDへのハイブリッド量子古典的アプローチの実用的な数値評価を提示する。
本手法は, 異なる境界条件, 周期性, バウンスバック, 移動壁を有する3つのベンチマークケースで評価した。
提案手法の有効性を検証し,10~3ドル程度の誤差忠実度と,実際の量子状態サンプリングに十分な確率を達成できた。
論文 参考訳(メタデータ) (2025-04-17T15:41:48Z) - Leveraging Pre-Trained Neural Networks to Enhance Machine Learning with Variational Quantum Circuits [48.33631905972908]
我々は、事前学習されたニューラルネットワークを用いて変分量子回路(VQC)を強化する革新的なアプローチを導入する。
この手法は近似誤差をキュービット数から効果的に分離し、制約条件の必要性を除去する。
我々の結果はヒトゲノム解析などの応用にまで拡張され、我々のアプローチの幅広い適用性を示している。
論文 参考訳(メタデータ) (2024-11-13T12:03:39Z) - Linear Noise Approximation Assisted Bayesian Inference on Mechanistic Model of Partially Observed Stochastic Reaction Network [2.325005809983534]
本稿では、部分的に観察された酵素反応ネットワーク(SRN)に対する効率的なベイズ推論手法を開発する。
線形雑音近似(LNA)メタモデルを提案する。
マルコフ・チェイン・モンテカルロの収束を高速化するために、導出確率の勾配を利用して効率的な後方サンプリング手法を開発した。
論文 参考訳(メタデータ) (2024-05-05T01:54:21Z) - Quantum Dynamical Hamiltonian Monte Carlo [0.0]
機械学習におけるユビキタスな問題は、ログの確率を通してのみアクセス可能な確率分布からサンプリングすることである。
我々は、チェインモンテカルロ(MCMC)サンプリングのための有名なハミルトンモンテカルロ法を拡張し、ハイブリッド方式で量子計算を利用する。
論文 参考訳(メタデータ) (2024-03-04T07:08:23Z) - Stability-Aware Training of Machine Learning Force Fields with Differentiable Boltzmann Estimators [11.699834591020057]
安定性を意識したボルツマン推定器(StABlE)トレーニングは、参照量子力学計算とシステムオブザーバブルから共同制御を利用するマルチモーダルトレーニング手法である。
StABlE TrainingはMLFFアーキテクチャやシステムにまたがる一般的な半経験的なフレームワークと見なすことができる。
論文 参考訳(メタデータ) (2024-02-21T18:12:07Z) - Online Variational Sequential Monte Carlo [49.97673761305336]
我々は,計算効率が高く正確なモデルパラメータ推定とベイジアン潜在状態推定を提供する変分連続モンテカルロ法(VSMC)を構築した。
オンラインVSMCは、パラメータ推定と粒子提案適応の両方を効率よく、完全にオンザフライで実行することができる。
論文 参考訳(メタデータ) (2023-12-19T21:45:38Z) - Learning Energy-Based Prior Model with Diffusion-Amortized MCMC [89.95629196907082]
非収束短距離MCMCを用いた事前及び後方サンプリングによる潜時空間EMM学習の一般的な実践は、さらなる進歩を妨げている。
本稿では,MCMCサンプリングのための単純だが効果的な拡散型アモータイズ手法を導入し,それに基づく潜時空間EMMのための新しい学習アルゴリズムを開発した。
論文 参考訳(メタデータ) (2023-10-05T00:23:34Z) - Enhancing variational Monte Carlo using a programmable quantum simulator [0.3078264203938486]
本研究では, 量子物質のシリカシミュレーションにおいて, 射影測定データを用いることが可能であることを示す。
我々はデータ強化型変分モンテカルロを用いて、リカレントニューラルネットワークに基づいて強力な自己回帰波動関数アンゼを訓練する。
我々の研究は、量子多体系の大規模シミュレーションのためのハイブリッド量子-古典的アプローチの可能性を強調している。
論文 参考訳(メタデータ) (2023-08-04T18:08:49Z) - Gibbs-Duhem-Informed Neural Networks for Binary Activity Coefficient
Prediction [45.84205238554709]
本稿では,Gibs-Duhem-informed Neural Network を用いて,様々な組成における二成分活性係数の予測を行う。
ニューラルネットワークの学習における損失関数にギブス・デュヘム方程式を明示的に含んでいる。
論文 参考訳(メタデータ) (2023-05-31T07:36:45Z) - Hyperparameter optimization, quantum-assisted model performance
prediction, and benchmarking of AI-based High Energy Physics workloads using
HPC [0.0]
本研究は,高性能コンピューティングシステムにおいてHPOプロセスを支援するために,モデル性能予測を利用する可能性について検討する。
量子アニールは性能予測器の訓練に用いられ、量子系の現在の限界から生じる問題を克服する手法が提案されている。
衝突イベント再構成のためのAIモデルに基づくコンテナ化されたベンチマークの開発から結果が提示される。
論文 参考訳(メタデータ) (2023-03-27T09:55:33Z) - Neural Posterior Estimation with Differentiable Simulators [58.720142291102135]
微分可能シミュレータを用いてニューラル・ポストミラー推定(NPE)を行う新しい手法を提案する。
勾配情報が後部形状の制約にどのように役立ち、試料効率を向上させるかを示す。
論文 参考訳(メタデータ) (2022-07-12T16:08:04Z) - Copula-based Risk Aggregation with Trapped Ion Quantum Computers [1.541403735141431]
コプラは、合同確率分布をモデル化するための数学的ツールである。
コプラを最大絡み合った量子状態として表現できることの最近の発見は、実用的な量子優位性に対する有望なアプローチを明らかにしている。
シミュレータと最先端のイオン量子コンピュータ上での回路設計と精度の異なるQCBMのトレーニングについて検討する。
論文 参考訳(メタデータ) (2022-06-23T18:39:30Z) - Learning a Restricted Boltzmann Machine using biased Monte Carlo
sampling [0.6554326244334867]
マルコフ・チェイン・モンテカルロによる平衡分布のサンプリングはバイアスサンプリング法により劇的に加速できることを示す。
また、このサンプリング手法を用いて、トレーニング中のログライクな勾配の計算を改善することも示している。
論文 参考訳(メタデータ) (2022-06-02T21:29:01Z) - Dynamic Bayesian Network Auxiliary ABC-SMC for Hybrid Model Bayesian
Inference to Accelerate Biomanufacturing Process Mechanism Learning and
Robust Control [2.727760379582405]
本稿では,バイオプロセッシング機構の複雑な因果関係を特徴付ける知識グラフハイブリッドモデルを提案する。
非線形反応、部分的に観察された状態、非定常力学を含む重要な性質を忠実に捉えることができる。
我々は、メカニズム学習を容易にし、ロバストなプロセス制御を支援する後部分布モデルの不確かさを導出する。
論文 参考訳(メタデータ) (2022-05-05T02:54:21Z) - Stochastic normalizing flows as non-equilibrium transformations [62.997667081978825]
正規化フローは従来のモンテカルロシミュレーションよりも効率的に格子場理論をサンプリングするための経路を提供することを示す。
本稿では,この拡張された生成モデルの効率を最適化する戦略と応用例を示す。
論文 参考訳(メタデータ) (2022-01-21T19:00:18Z) - Generalization Metrics for Practical Quantum Advantage in Generative
Models [68.8204255655161]
生成モデリングは量子コンピュータにとって広く受け入れられている自然のユースケースである。
我々は,アルゴリズムの一般化性能を計測して,生成モデリングのための実用的な量子優位性を探索する,単純で曖昧な手法を構築した。
シミュレーションの結果、我々の量子にインスパイアされたモデルは、目に見えない、有効なサンプルを生成するのに、最大で68倍の費用がかかります。
論文 参考訳(メタデータ) (2022-01-21T16:35:35Z) - Deep Explicit Duration Switching Models for Time Series [84.33678003781908]
状態依存型と時間依存型の両方のスイッチングダイナミクスを識別できるフレキシブルモデルを提案する。
状態依存スイッチングは、リカレントな状態-スイッチ接続によって実現される。
時間依存スイッチング動作を改善するために、明示的な期間カウント変数が使用される。
論文 参考訳(メタデータ) (2021-10-26T17:35:21Z) - Predicting Dynamics of Transmon Qubit-Cavity Systems with Recurrent
Neural Networks [0.0]
マスター方程式の解に基づく現在のモデルは、プレイで非マルコフ力学を捉えるのに十分ではない。
本稿では、繰り返しニューラルネットワークを用いて、結合したトランペット量子ビットキャビティシステムに対するリンドブラッドマスター方程式の効率的な解を求める方法を提案する。
論文 参考訳(メタデータ) (2021-09-29T15:02:23Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
量子力学シミュレーションのための量子アルゴリズムは、伝統的に時間進化作用素のトロッター近似の実装に基づいている。
変分量子アルゴリズムは欠かせない代替手段となり、現在のハードウェア上での小規模なシミュレーションを可能にしている。
量子ゲートコストが明らかに削減されているにもかかわらず、現在の実装における変分法は量子的優位性をもたらすことはありそうにない。
論文 参考訳(メタデータ) (2021-08-09T18:00:05Z) - Quantum Markov Chain Monte Carlo with Digital Dissipative Dynamics on
Quantum Computers [52.77024349608834]
少数のアンシラ量子ビットを用いて環境との相互作用をシミュレートするデジタル量子アルゴリズムを開発した。
逆イジングモデルの熱状態のシミュレーションによるアルゴリズムの評価を行った。
論文 参考訳(メタデータ) (2021-03-04T18:21:00Z) - Sampling in Combinatorial Spaces with SurVAE Flow Augmented MCMC [83.48593305367523]
ハイブリッドモンテカルロ(Hybrid Monte Carlo)は、複素連続分布からサンプリングする強力なマルコフ連鎖モンテカルロ法である。
本稿では,SurVAEフローを用いたモンテカルロ法の拡張に基づく新しい手法を提案する。
本稿では,統計学,計算物理学,機械学習など,様々な分野におけるアルゴリズムの有効性を実証し,代替アルゴリズムと比較した改良点を考察する。
論文 参考訳(メタデータ) (2021-02-04T02:21:08Z) - Quantum Generative Adversarial Networks in a Continuous-Variable
Architecture to Simulate High Energy Physics Detectors [0.0]
連続可変量子計算に用いる新しい量子GAN(qGAN)のプロトタイプを導入し,解析する。
量子と古典的判別器を備えた2つのCV qGANモデルを用いて、小型でカロリーの出力を再現する実験を行った。
論文 参考訳(メタデータ) (2021-01-26T23:33:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。