論文の概要: Accelerating genetic optimization of nonlinear model predictive control by learning optimal search space size
- arxiv url: http://arxiv.org/abs/2305.08094v2
- Date: Mon, 13 Jan 2025 14:53:11 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-14 14:25:52.679764
- Title: Accelerating genetic optimization of nonlinear model predictive control by learning optimal search space size
- Title(参考訳): 最適探索空間サイズ学習による非線形モデル予測制御の遺伝的最適化
- Authors: Eslam Mostafa, Hussein A. Aly, Ahmed Elliethy,
- Abstract要約: 遺伝的アルゴリズム(GA)は一般に非線形モデル予測制御の最適化問題を解決するために用いられる。
本稿では,NMPCの遺伝的最適化を最適探索空間サイズを学習することで高速化することを提案する。
提案手法はGAの計算時間を短縮し、収束率を改善して入力を制御し、安定かつ実現可能なソリューションを提供する。
- 参考スコア(独自算出の注目度): 0.40964539027092917
- License:
- Abstract: Genetic algorithm (GA) is typically used to solve nonlinear model predictive control's optimization problem. However, the size of the search space in which the GA searches for the optimal control inputs is crucial for its applicability to fast-response systems. This paper proposes accelerating the genetic optimization of NMPC by learning optimal search space size. The approach trains a multivariate regression model to adaptively predict the best smallest size of the search space in every control cycle. The proposed approach reduces the GA's computational time, improves the chance of convergence to better control inputs, and provides a stable and feasible solution. The proposed approach was evaluated on three nonlinear systems and compared to four other evolutionary algorithms implemented in a processor-in-the-loop fashion. The results show that the proposed approach provides a 17-45\% reduction in computational time and increases the convergence rate by 35-47\%. The source code is available on GitHub.
- Abstract(参考訳): 遺伝的アルゴリズム(GA)は一般に非線形モデル予測制御の最適化問題を解決するために用いられる。
しかし, GAが最適制御入力を探索する検索空間のサイズは, 高速応答システムに適用可能であるために重要である。
本稿では,NMPCの遺伝的最適化を最適探索空間サイズを学習することで高速化することを提案する。
この手法は多変量回帰モデルを訓練し、各制御サイクルにおける探索空間の最も小さなサイズを適応的に予測する。
提案手法はGAの計算時間を短縮し、収束率を改善して入力を制御し、安定かつ実現可能なソリューションを提供する。
提案手法は3つの非線形システムで評価され, プロセッサ・イン・ザ・ループ方式で実装された他の4つの進化的アルゴリズムと比較された。
その結果,提案手法は計算時間を17~45倍に削減し,収束率を35~47倍に向上させた。
ソースコードはGitHubで入手できる。
関連論文リスト
- Scalable Bayesian Optimization via Focalized Sparse Gaussian Processes [8.40647440727154]
我々は,より効率的な表現力を検索空間の関連領域に割り当てることのできる,疎いGPを用いたベイズ最適化アルゴリズムについて論じる。
本研究では,FocalBOが大量のオフラインおよびオンラインデータを効率よく活用し,ロボット形態学設計における最先端性能と585次元筋骨格系を制御できることを示す。
論文 参考訳(メタデータ) (2024-12-29T06:36:15Z) - Frog-Snake prey-predation Relationship Optimization (FSRO) : A novel nature-inspired metaheuristic algorithm for feature selection [0.0]
本研究では,Frog-Snake prey-predation Relationship Optimization (FSRO)アルゴリズムを提案する。
カエルとヘビの捕食関係から着想を得て、離散最適化問題に適用した。
提案アルゴリズムは26種類の機械学習データセットを用いて特徴選択に関する計算実験を行う。
論文 参考訳(メタデータ) (2024-02-13T06:39:15Z) - Federated Conditional Stochastic Optimization [110.513884892319]
条件付き最適化は、不変学習タスク、AUPRC、AMLなど、幅広い機械学習タスクで見られる。
本稿では,分散フェデレーション学習のためのアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-10-04T01:47:37Z) - Fast Computation of Optimal Transport via Entropy-Regularized Extragradient Methods [75.34939761152587]
2つの分布間の最適な輸送距離の効率的な計算は、様々な応用を促進するアルゴリズムとして機能する。
本稿では,$varepsilon$加法精度で最適な輸送を計算できるスケーラブルな一階最適化法を提案する。
論文 参考訳(メタデータ) (2023-01-30T15:46:39Z) - Genetically Modified Wolf Optimization with Stochastic Gradient Descent
for Optimising Deep Neural Networks [0.0]
本研究の目的は、人口ベースメタヒューリスティックアルゴリズムを用いて、ニューラルネットワーク(NN)重み付けを最適化するための代替アプローチを分析することである。
Grey Wolf (GWO) と Genetic Modified Algorithms (GA) のハイブリッドをグラディエント・Descent (SGD) と組み合わせて検討した。
このアルゴリズムは、高次元性の問題にも対処しながら、エクスプロイトと探索の組み合わせを可能にする。
論文 参考訳(メタデータ) (2023-01-21T13:22:09Z) - High-dimensional Bayesian Optimization Algorithm with Recurrent Neural
Network for Disease Control Models in Time Series [1.9371782627708491]
本稿では,リカレントニューラルネットワークを組み合わせた高次元ベイズ最適化アルゴリズムを提案する。
提案したRNN-BOアルゴリズムは,低次元空間における最適制御問題を解くことができる。
また、RNN層の異なる数の影響や、ソリューションの品質と関連する計算努力のトレードオフに対する訓練のエポックスについても論じる。
論文 参考訳(メタデータ) (2022-01-01T08:40:17Z) - High dimensional Bayesian Optimization Algorithm for Complex System in
Time Series [1.9371782627708491]
本稿では,新しい高次元ベイズ最適化アルゴリズムを提案する。
モデルの時間依存特性や次元依存特性に基づいて,提案アルゴリズムは次元を均等に低減することができる。
最適解の最終精度を高めるために,提案アルゴリズムは,最終段階におけるアダムに基づく一連のステップに基づく局所探索を追加する。
論文 参考訳(メタデータ) (2021-08-04T21:21:17Z) - Towards Optimally Efficient Tree Search with Deep Learning [76.64632985696237]
本稿では,線形モデルから信号整数を推定する古典整数最小二乗問題について検討する。
問題はNPハードであり、信号処理、バイオインフォマティクス、通信、機械学習といった様々な応用でしばしば発生する。
本稿では, 深いニューラルネットワークを用いて, 単純化されたメモリバウンドA*アルゴリズムの最適推定を推定し, HATSアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-01-07T08:00:02Z) - Global Optimization of Gaussian processes [52.77024349608834]
少数のデータポイントで学習したガウス過程を訓練した空間定式化を提案する。
このアプローチはまた、より小さく、計算的にもより安価なサブソルバを低いバウンディングに導く。
提案手法の順序の順序による時間収束を,総じて低減する。
論文 参考訳(メタデータ) (2020-05-21T20:59:11Z) - Adaptivity of Stochastic Gradient Methods for Nonconvex Optimization [71.03797261151605]
適応性は現代最適化理論において重要であるが、研究されていない性質である。
提案アルゴリズムは,PL目標に対して既存のアルゴリズムよりも優れた性能を保ちながら,PL目標に対して最適な収束性を実現することを実証した。
論文 参考訳(メタデータ) (2020-02-13T05:42:27Z) - Self-Directed Online Machine Learning for Topology Optimization [58.920693413667216]
自己指向型オンライン学習最適化は、ディープニューラルネットワーク(DNN)と有限要素法(FEM)計算を統合している。
本アルゴリズムは, コンプライアンスの最小化, 流体構造最適化, 伝熱促進, トラス最適化の4種類の問題によって検証された。
その結果, 直接使用法と比較して計算時間を2~5桁削減し, 実験で検証した全ての最先端アルゴリズムより優れていた。
論文 参考訳(メタデータ) (2020-02-04T20:00:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。