論文の概要: STREAMLINE: Streaming Active Learning for Realistic Multi-Distributional
Settings
- arxiv url: http://arxiv.org/abs/2305.10643v1
- Date: Thu, 18 May 2023 02:01:45 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-19 17:30:33.083925
- Title: STREAMLINE: Streaming Active Learning for Realistic Multi-Distributional
Settings
- Title(参考訳): STREAMLINE: リアルなマルチ分散設定のためのストリーミングアクティブラーニング
- Authors: Nathan Beck, Suraj Kothawade, Pradeep Shenoy, Rishabh Iyer
- Abstract要約: STREAMLINEは、シナリオ駆動スライス不均衡を緩和する新しいストリーミングアクティブラーニングフレームワークである。
画像分類とオブジェクト検出タスクのための実世界のストリーミングシナリオ上でSTREAMLINEを評価する。
- 参考スコア(独自算出の注目度): 2.580765958706854
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep neural networks have consistently shown great performance in several
real-world use cases like autonomous vehicles, satellite imaging, etc.,
effectively leveraging large corpora of labeled training data. However,
learning unbiased models depends on building a dataset that is representative
of a diverse range of realistic scenarios for a given task. This is challenging
in many settings where data comes from high-volume streams, with each scenario
occurring in random interleaved episodes at varying frequencies. We study
realistic streaming settings where data instances arrive in and are sampled
from an episodic multi-distributional data stream. Using submodular information
measures, we propose STREAMLINE, a novel streaming active learning framework
that mitigates scenario-driven slice imbalance in the working labeled data via
a three-step procedure of slice identification, slice-aware budgeting, and data
selection. We extensively evaluate STREAMLINE on real-world streaming scenarios
for image classification and object detection tasks. We observe that STREAMLINE
improves the performance on infrequent yet critical slices of the data over
current baselines by up to $5\%$ in terms of accuracy on our image
classification tasks and by up to $8\%$ in terms of mAP on our object detection
tasks.
- Abstract(参考訳): ディープニューラルネットワークは、自動運転車や衛星画像など、現実世界のいくつかのユースケースにおいて一貫して優れたパフォーマンスを示しており、大量のラベル付きトレーニングデータを効果的に活用している。
しかしながら、偏りのないモデルを学ぶには、与えられたタスクのさまざまな現実的なシナリオを表現するデータセットを構築する必要がある。
これは、データが大量のストリームから来る多くの環境では困難であり、各シナリオは様々な周波数でランダムにインターリーブされたエピソードで発生する。
データインスタンスが到着し、エピソディックなマルチ分散データストリームからサンプリングされる、現実的なストリーミング設定について検討する。
そこで本研究では,slice identification,slice-aware budgeting,およびdata selectionという3段階の手順によって,作業ラベルデータのシナリオ駆動スライス不均衡を緩和する,新たなストリーミングアクティブラーニングフレームワークであるstreamlineを提案する。
画像分類やオブジェクト検出タスクのリアルタイムストリーミングシナリオにおいて,STREAMLINEを広範囲に評価する。
ストリームラインは、現在のベースラインよりも低頻度で重要なデータスライスのパフォーマンスを、画像分類タスクの精度で最大$5\%$、オブジェクト検出タスクで最大$8\%$で改善します。
関連論文リスト
- Adapt-$\infty$: Scalable Lifelong Multimodal Instruction Tuning via Dynamic Data Selection [89.42023974249122]
Adapt-$infty$は、Lifelong Instruction Tuningの新しいマルチウェイおよびアダプティブデータ選択アプローチである。
勾配に基づくサンプルベクトルをグループ化して擬似スキルクラスタを構築する。
セレクタエキスパートのプールから各スキルクラスタの最高のパフォーマンスデータセレクタを選択する。
論文 参考訳(メタデータ) (2024-10-14T15:48:09Z) - LVLane: Deep Learning for Lane Detection and Classification in
Challenging Conditions [2.5641096293146712]
本稿では,ディープラーニング手法に基づくエンドツーエンドの車線検出・分類システムを提案する。
本研究では,最新技術(SOTA)レーンローカライゼーションモデルにおいて重要な課題を提起するシナリオを包含する,厳密にキュレートされたユニークなデータセットを提案する。
そこで本研究では,CNNをベースとした検知器とシームレスに統合し,異なるレーンの識別を容易にする分類手法を提案する。
論文 参考訳(メタデータ) (2023-07-13T16:09:53Z) - ALP: Action-Aware Embodied Learning for Perception [60.64801970249279]
認知のための行動認識型身体学習(ALP)について紹介する。
ALPは、強化学習ポリシーと逆ダイナミクス予測目標を最適化することにより、行動情報を表現学習に組み込む。
ALPは、複数の下流認識タスクにおいて、既存のベースラインよりも優れていることを示す。
論文 参考訳(メタデータ) (2023-06-16T21:51:04Z) - Mitigating Representation Bias in Action Recognition: Algorithms and
Benchmarks [76.35271072704384]
ディープラーニングモデルは、稀なシーンやオブジェクトを持つビデオに適用すると、パフォーマンスが悪くなります。
この問題にはアルゴリズムとデータセットの2つの異なる角度から対処する。
偏りのある表現は、他のデータセットやタスクに転送するとより一般化できることを示す。
論文 参考訳(メタデータ) (2022-09-20T00:30:35Z) - Basket-based Softmax [12.744577044692276]
我々は,バスケットベースソフトマックス(BBS)と呼ばれる新しい採鉱訓練戦略を提案する。
各トレーニングサンプルに対して、他のデータセットから負のクラスをマイニングする手がかりとして、類似度スコアを同時に採用する。
実世界とシミュレーションされたデータセットを用いて、顔認識と再識別のタスクにおけるBBSの効率性と優位性を実証する。
論文 参考訳(メタデータ) (2022-01-23T16:43:29Z) - Self-supervised Audiovisual Representation Learning for Remote Sensing Data [96.23611272637943]
遠隔センシングにおける深層ニューラルネットワークの事前学習のための自己教師型アプローチを提案する。
ジオタグ付きオーディオ記録とリモートセンシングの対応を利用して、これは完全にラベルなしの方法で行われる。
提案手法は,既存のリモートセンシング画像の事前学習方法よりも優れていることを示す。
論文 参考訳(メタデータ) (2021-08-02T07:50:50Z) - Automatic Curation of Large-Scale Datasets for Audio-Visual
Representation Learning [62.47593143542552]
本稿では,自動データセットキュレーションのためのサブセット最適化手法について述べる。
本研究では,高視聴覚対応の映像を抽出し,自己監視モデルが自動的に構築されているにもかかわらず,既存のスケールのビデオデータセットと類似したダウンストリームパフォーマンスを達成できることを実証した。
論文 参考訳(メタデータ) (2021-01-26T14:27:47Z) - Multimodal Prototypical Networks for Few-shot Learning [20.100480009813953]
クロスモーダルな機能生成フレームワークは、数ショットのシナリオにおいて、人口密度の低い埋め込みスペースを強化するために使用される。
このような場合、近隣の分類は実現可能なアプローチであり、最先端のシングルモーダルおよびマルチモーダルの複数ショット学習方法よりも優れていることを示す。
論文 参考訳(メタデータ) (2020-11-17T19:32:59Z) - Deep Multimodal Transfer-Learned Regression in Data-Poor Domains [0.0]
画像と特徴データのマルチモーダル学習のためのDMTL-R(Deep Multimodal Transfer-Learned Regressor)を提案する。
我々のモデルは、少量のトレーニング画像データに基づいて、与えられたトレーニング済みCNN重みのセットを微調整することができる。
各種CNNアーキテクチャからの事前学習重みを用いた位相場シミュレーションマイクロ構造画像とそれに付随する物理特徴集合を用いた結果を提案する。
論文 参考訳(メタデータ) (2020-06-16T16:52:44Z) - On the performance of deep learning models for time series
classification in streaming [0.0]
この研究は、データストリーミング分類のための様々なタイプのディープアーキテクチャのパフォーマンスを評価することである。
複数の時系列データセット上で,多層パーセプトロン,リカレント,畳み込み,時間的畳み込みニューラルネットワークなどのモデルを評価する。
論文 参考訳(メタデータ) (2020-03-05T11:41:29Z) - A Multi-Channel Neural Graphical Event Model with Negative Evidence [76.51278722190607]
イベントデータセットは、タイムライン上で不規則に発生するさまざまなタイプのイベントのシーケンスである。
基礎となる強度関数を推定するために,非パラメトリックディープニューラルネットワーク手法を提案する。
論文 参考訳(メタデータ) (2020-02-21T23:10:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。