Performance improvement of a fractional quantum Stirling heat engine
- URL: http://arxiv.org/abs/2305.10676v1
- Date: Thu, 18 May 2023 03:28:41 GMT
- Title: Performance improvement of a fractional quantum Stirling heat engine
- Authors: Shihao Xia, Youlin Wang, Minglong Lv, Jincan Chen, and Shanhe Su
- Abstract summary: We incorporate fractional quantum mechanics into the cycle of a quantum Stirling heat engine.
We examine the influence of fractional parameter on the regeneration and efficiency.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: To investigate the impact of fractional parameter on the thermodynamic
behaviors of quantum systems, we incorporate fractional quantum mechanics into
the cycle of a quantum Stirling heat engine and examine the influence of
fractional parameter on the regeneration and efficiency. We propose a novel
approach to control the thermodynamic cycle that leverages the fractional
parameter structure and evaluates its effectiveness. Our findings reveal that
by tuning the fractional parameter, the region of the cycle with the perfect
regeneration and the Carnot efficiency can be expanded.
Related papers
- Dynamically Emergent Quantum Thermodynamics: Non-Markovian Otto Cycle [49.1574468325115]
We revisit the thermodynamic behavior of the quantum Otto cycle with a focus on memory effects and strong system-bath couplings.
Our investigation is based on an exact treatment of non-Markovianity by means of an exact quantum master equation.
arXiv Detail & Related papers (2023-08-18T11:00:32Z) - The Critical Behavior of Quantum Stirling Heat Engine [0.6719751155411076]
We investigate the performance of a Stirling cycle with a working substance (WS) modeled as the quantum Rabi model (QRM)
Our findings indicate that the criticality of the QRM has a positive effect on improving the efficiency of the Stirling cycle.
arXiv Detail & Related papers (2023-07-08T04:16:34Z) - Quantum Effects on the Synchronization Dynamics of the Kuramoto Model [62.997667081978825]
We show that quantum fluctuations hinder the emergence of synchronization, albeit not entirely suppressing it.
We derive an analytical expression for the critical coupling, highlighting its dependence on the model parameters.
arXiv Detail & Related papers (2023-06-16T16:41:16Z) - Thermodynamics of adiabatic quantum pumping in quantum dots [50.24983453990065]
We consider adiabatic quantum pumping through a resonant level model, a single-level quantum dot connected to two fermionic leads.
We develop a self-contained thermodynamic description of this model accounting for the variation of the energy level of the dot and the tunnelling rates with the thermal baths.
arXiv Detail & Related papers (2023-06-14T16:29:18Z) - Thermodynamics and Fluctuations in Quantum Heat Engines under Reservoir
Squeezing [7.109424824240926]
We show that reservoir squeezing significantly enhances the performance by increasing the thermodynamic efficiency and the power.
An experimental scheme for realizing this quantum heat engine is proposed using a single-electron spin pertaining to a trapped 40Ca$+$ ion.
arXiv Detail & Related papers (2022-09-13T11:15:31Z) - The quantum Otto cycle in a superconducting cavity in the non-adiabatic
regime [62.997667081978825]
We analyze the efficiency of the quantum Otto cycle applied to a superconducting cavity.
It is shown that, in a non-adiabatic regime, the efficiency of the quantum cycle is affected by the dynamical Casimir effect.
arXiv Detail & Related papers (2021-11-30T11:47:33Z) - Thermal divergences of quantum measurement engine [6.2855988683171375]
The work output, quantum heat, and efficiency are derived, highlighting the important role of the thermal divergence recently reappearing in open quantum systems.
The spin-engine architecture offers a comprehensive platform for future investigations of extracting work from quantum measurement.
arXiv Detail & Related papers (2021-09-22T15:35:40Z) - Collective effects on the performance and stability of quantum heat
engines [62.997667081978825]
Recent predictions for quantum-mechanical enhancements in the operation of small heat engines have raised renewed interest.
One essential question is whether collective effects may help to carry enhancements over larger scales.
We study how power, efficiency and constancy scale with the number of spins composing the engine.
arXiv Detail & Related papers (2021-06-25T18:00:07Z) - Maximal power for heat engines: role of asymmetric interaction times [110.83289076967895]
We introduce the idea of adjusting the interaction time asymmetry in order to optimize the engine performance.
Distinct optimization protocols are analyzed in the framework of thermodynamics.
arXiv Detail & Related papers (2020-12-16T22:26:14Z) - Enhancement of efficiency in the Dicke model quantum heat engine [0.0]
We analyze a quantum heat engine described by the full Dicke model.
The relation between ground state degeneracy, related to the quantum phase transition, and maximum efficiency is investigated.
arXiv Detail & Related papers (2019-06-01T21:12:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.