A Survey on Time-Series Pre-Trained Models
- URL: http://arxiv.org/abs/2305.10716v2
- Date: Fri, 04 Oct 2024 15:36:08 GMT
- Title: A Survey on Time-Series Pre-Trained Models
- Authors: Qianli Ma, Zhen Liu, Zhenjing Zheng, Ziyang Huang, Siying Zhu, Zhongzhong Yu, James T. Kwok,
- Abstract summary: Time-Series Mining (TSM) is an important research area since it shows great potential in practical applications.
Deep learning models that rely on massive labeled data have been utilized for TSM successfully.
Recently, pre-trained models have gradually attracted attention in the time series domain due to their remarkable performance in computer vision and natural language processing.
- Score: 37.0932706268589
- License:
- Abstract: Time-Series Mining (TSM) is an important research area since it shows great potential in practical applications. Deep learning models that rely on massive labeled data have been utilized for TSM successfully. However, constructing a large-scale well-labeled dataset is difficult due to data annotation costs. Recently, pre-trained models have gradually attracted attention in the time series domain due to their remarkable performance in computer vision and natural language processing. In this survey, we provide a comprehensive review of Time-Series Pre-Trained Models (TS-PTMs), aiming to guide the understanding, applying, and studying TS-PTMs. Specifically, we first briefly introduce the typical deep learning models employed in TSM. Then, we give an overview of TS-PTMs according to the pre-training techniques. The main categories we explore include supervised, unsupervised, and self-supervised TS-PTMs. Further, extensive experiments involving 27 methods, 434 datasets, and 679 transfer learning scenarios are conducted to analyze the advantages and disadvantages of transfer learning strategies, Transformer-based models, and representative TS-PTMs. Finally, we point out some potential directions of TS-PTMs for future work.
Related papers
- A Systematic Evaluation of Generated Time Series and Their Effects in Self-Supervised Pretraining [34.99623416888207]
Self-supervised Pretrained Models (PTMs) have demonstrated remarkable performance in computer vision and natural language processing tasks.
In our experiments, most self-supervised time series PTMs were surpassed by simple supervised models.
Our results indicate that replacing a real-data pretraining set with a greater volume of only generated samples produces noticeable improvement.
arXiv Detail & Related papers (2024-08-15T00:53:09Z) - Understanding Different Design Choices in Training Large Time Series Models [71.20102277299445]
Training Large Time Series Models (LTSMs) on heterogeneous time series data poses unique challenges.
We propose emphtime series prompt, a novel statistical prompting strategy tailored to time series data.
We introduce textttLTSM-bundle, which bundles the best design choices we have identified.
arXiv Detail & Related papers (2024-06-20T07:09:19Z) - Timer: Generative Pre-trained Transformers Are Large Time Series Models [83.03091523806668]
This paper aims at the early development of large time series models (LTSM)
During pre-training, we curate large-scale datasets with up to 1 billion time points.
To meet diverse application needs, we convert forecasting, imputation, and anomaly detection of time series into a unified generative task.
arXiv Detail & Related papers (2024-02-04T06:55:55Z) - Large Pre-trained time series models for cross-domain Time series analysis tasks [20.228846068418765]
We propose a novel method of textitadaptive segmentation that automatically identifies optimal dataset-specific segmentation strategy during pre-training.
This enables LPTM to perform similar to or better than domain-specific state-of-art model when fine-tuned to different downstream time-series analysis tasks and under zero-shot settings.
arXiv Detail & Related papers (2023-11-19T20:16:16Z) - TRAM: Benchmarking Temporal Reasoning for Large Language Models [12.112914393948415]
We introduce TRAM, a temporal reasoning benchmark composed of ten datasets.
We evaluate popular language models like GPT-4 and Llama2 in zero-shot and few-shot scenarios.
Our findings indicate that the best-performing model lags significantly behind human performance.
arXiv Detail & Related papers (2023-10-02T00:59:07Z) - Large-scale Multi-Modal Pre-trained Models: A Comprehensive Survey [66.18478838828231]
Multi-modal pre-trained big models have drawn more and more attention in recent years.
This paper introduces the background of multi-modal pre-training by reviewing the conventional deep, pre-training works in natural language process, computer vision, and speech.
Then, we introduce the task definition, key challenges, and advantages of multi-modal pre-training models (MM-PTMs), and discuss the MM-PTMs with a focus on data, objectives, network, and knowledge enhanced pre-training.
arXiv Detail & Related papers (2023-02-20T15:34:03Z) - Pre-training Enhanced Spatial-temporal Graph Neural Network for
Multivariate Time Series Forecasting [13.441945545904504]
We propose a novel framework, in which STGNN is Enhanced by a scalable time series Pre-training model (STEP)
Specifically, we design a pre-training model to efficiently learn temporal patterns from very long-term history time series.
Our framework is capable of significantly enhancing downstream STGNNs, and our pre-training model aptly captures temporal patterns.
arXiv Detail & Related papers (2022-06-18T04:24:36Z) - Visual Learning-based Planning for Continuous High-Dimensional POMDPs [81.16442127503517]
Visual Tree Search (VTS) is a learning and planning procedure that combines generative models learned offline with online model-based POMDP planning.
VTS bridges offline model training and online planning by utilizing a set of deep generative observation models to predict and evaluate the likelihood of image observations in a Monte Carlo tree search planner.
We show that VTS is robust to different observation noises and, since it utilizes online, model-based planning, can adapt to different reward structures without the need to re-train.
arXiv Detail & Related papers (2021-12-17T11:53:31Z) - Pre-Trained Models: Past, Present and Future [126.21572378910746]
Large-scale pre-trained models (PTMs) have recently achieved great success and become a milestone in the field of artificial intelligence (AI)
By storing knowledge into huge parameters and fine-tuning on specific tasks, the rich knowledge implicitly encoded in huge parameters can benefit a variety of downstream tasks.
It is now the consensus of the AI community to adopt PTMs as backbone for downstream tasks rather than learning models from scratch.
arXiv Detail & Related papers (2021-06-14T02:40:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.