GraphFC: Customs Fraud Detection with Label Scarcity
- URL: http://arxiv.org/abs/2305.11377v2
- Date: Sat, 19 Aug 2023 13:30:48 GMT
- Title: GraphFC: Customs Fraud Detection with Label Scarcity
- Authors: Karandeep Singh, Yu-Che Tsai, Cheng-Te Li, Meeyoung Cha, Shou-De Lin
- Abstract summary: With limited manpower, the custom offices can only undertake manual inspection of a limited number of declarations.
Current approaches for customs fraud detection are not well suited and designed for this real-world setting.
In this work, we propose a model-agnostic, domain-specific, semi-supervised graph neural network based customs fraud detection algorithm.
- Score: 21.7060251265426
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Custom officials across the world encounter huge volumes of transactions.
With increased connectivity and globalization, the customs transactions
continue to grow every year. Associated with customs transactions is the
customs fraud - the intentional manipulation of goods declarations to avoid the
taxes and duties. With limited manpower, the custom offices can only undertake
manual inspection of a limited number of declarations. This necessitates the
need for automating the customs fraud detection by machine learning (ML)
techniques. Due the limited manual inspection for labeling the new-incoming
declarations, the ML approach should have robust performance subject to the
scarcity of labeled data. However, current approaches for customs fraud
detection are not well suited and designed for this real-world setting. In this
work, we propose $\textbf{GraphFC}$ ($\textbf{Graph}$ neural networks for
$\textbf{C}$ustoms $\textbf{F}$raud), a model-agnostic, domain-specific,
semi-supervised graph neural network based customs fraud detection algorithm
that has strong semi-supervised and inductive capabilities. With upto 252%
relative increase in recall over the present state-of-the-art, extensive
experimentation on real customs data from customs administrations of three
different countries demonstrate that GraphFC consistently outperforms various
baselines and the present state-of-art by a large margin.
Related papers
- Heterogeneous Graph Auto-Encoder for CreditCard Fraud Detection [0.7864304771129751]
This paper proposes a novel approach for credit card fraud detection using Graph Neural Networks (GNNs) with attention mechanisms applied to heterogeneous graph representations of financial data.
The proposed model outperforms benchmark algorithms such as Graph Sage and FI-GRL, achieving a superior AUC-PR of 0.89 and an F1-score of 0.81.
arXiv Detail & Related papers (2024-10-10T17:05:27Z) - Trustless Audits without Revealing Data or Models [49.23322187919369]
We show that it is possible to allow model providers to keep their model weights (but not architecture) and data secret while allowing other parties to trustlessly audit model and data properties.
We do this by designing a protocol called ZkAudit in which model providers publish cryptographic commitments of datasets and model weights.
arXiv Detail & Related papers (2024-04-06T04:43:06Z) - ALF: Adaptive Label Finetuning for Scene Graph Generation [116.59868289196157]
Scene Graph Generation endeavors to predict the relationships between subjects and objects in a given image.
Long-tail distribution of relations often leads to biased prediction on coarse labels, presenting a substantial hurdle in SGG.
We introduce one-stage data transfer pipeline in SGG, termed Adaptive Label Finetuning (ALF), which eliminates the need for extra retraining sessions.
ALF achieves a 16% improvement in mR@100 compared to the typical SGG method Motif, with only a 6% increase in calculation costs compared to the state-of-the-art method IETrans.
arXiv Detail & Related papers (2023-12-29T01:37:27Z) - Transaction Fraud Detection via an Adaptive Graph Neural Network [64.9428588496749]
We propose an Adaptive Sampling and Aggregation-based Graph Neural Network (ASA-GNN) that learns discriminative representations to improve the performance of transaction fraud detection.
A neighbor sampling strategy is performed to filter noisy nodes and supplement information for fraudulent nodes.
Experiments on three real financial datasets demonstrate that the proposed method ASA-GNN outperforms state-of-the-art ones.
arXiv Detail & Related papers (2023-07-11T07:48:39Z) - LaundroGraph: Self-Supervised Graph Representation Learning for
Anti-Money Laundering [5.478764356647437]
LaundroGraph is a novel self-supervised graph representation learning approach.
It provides insights to assist the anti-money laundering reviewing process.
To the best of our knowledge, this is the first fully self-supervised system within the context of AML detection.
arXiv Detail & Related papers (2022-10-25T21:58:02Z) - Customs Import Declaration Datasets [12.306592823750385]
We introduce an import declaration dataset to facilitate the collaboration between domain experts in customs administrations and researchers from diverse domains.
The dataset contains 54,000 artificially generated trades with 22 key attributes.
We empirically show that more advanced algorithms can better detect fraud.
arXiv Detail & Related papers (2022-08-04T06:20:20Z) - Deep Fraud Detection on Non-attributed Graph [61.636677596161235]
Graph Neural Networks (GNNs) have shown solid performance on fraud detection.
labeled data is scarce in large-scale industrial problems, especially for fraud detection.
We propose a novel graph pre-training strategy to leverage more unlabeled data.
arXiv Detail & Related papers (2021-10-04T03:42:09Z) - Customs Fraud Detection in the Presence of Concept Drift [2.257416403770908]
ADAPT is an adaptive selection method that controls the balance between exploitation and exploration strategies.
We find the system with ADAPT can gradually adapt to the dataset and find the appropriate amount of exploration ratio with high performance.
arXiv Detail & Related papers (2021-09-29T02:52:19Z) - Relational Graph Neural Networks for Fraud Detection in a Super-App
environment [53.561797148529664]
We propose a framework of relational graph convolutional networks methods for fraudulent behaviour prevention in the financial services of a Super-App.
We use an interpretability algorithm for graph neural networks to determine the most important relations to the classification task of the users.
Our results show that there is an added value when considering models that take advantage of the alternative data of the Super-App and the interactions found in their high connectivity.
arXiv Detail & Related papers (2021-07-29T00:02:06Z) - Active Learning for Human-in-the-Loop Customs Inspection [12.66621970520437]
We study the human-in-the-loop customs inspection scenario, where an AI-assisted algorithm supports customs officers by recommending a set of imported goods to be inspected.
We show that a hybrid strategy of selecting likely fraudulent and uncertain items will eventually outperform the exploitation-only strategy.
arXiv Detail & Related papers (2020-10-27T13:31:31Z) - DFraud3- Multi-Component Fraud Detection freeof Cold-start [50.779498955162644]
The Cold-start is a significant problem referring to the failure of a detection system to recognize the authenticity of a new user.
In this paper, we model a review system as a Heterogeneous InformationNetwork (HIN) which enables a unique representation to every component.
HIN with graph induction helps to address the camouflage issue (fraudsterswith genuine reviews) which has shown to be more severe when it is coupled with cold-start, i.e., new fraudsters with genuine first reviews.
arXiv Detail & Related papers (2020-06-10T08:20:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.