論文の概要: Sequence-to-Sequence Forecasting-aided State Estimation for Power
Systems
- arxiv url: http://arxiv.org/abs/2305.13215v1
- Date: Mon, 22 May 2023 16:46:37 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-23 14:17:56.607339
- Title: Sequence-to-Sequence Forecasting-aided State Estimation for Power
Systems
- Title(参考訳): 電力系統の時系列予測支援状態推定
- Authors: Kamal Basulaiman, Masoud Barati
- Abstract要約: 本稿では,マルチステップの電力系統状態推定をリアルタイムに正確に予測するエンドツーエンドのディープラーニングフレームワークを提案する。
双方向ゲートリカレントユニット(BiGRU)をモデルに組み込んで高い予測精度を実現する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Power system state forecasting has gained more attention in real-time
operations recently. Unique challenges to energy systems are emerging with the
massive deployment of renewable energy resources. As a result, power system
state forecasting are becoming more crucial for monitoring, operating and
securing modern power systems. This paper proposes an end-to-end deep learning
framework to accurately predict multi-step power system state estimations in
real-time. In our model, we employ a sequence-to-sequence framework to allow
for multi-step forecasting. Bidirectional gated recurrent units (BiGRUs) are
incorporated into the model to achieve high prediction accuracy. The dominant
performance of our model is validated using real dataset. Experimental results
show the superiority of our model in predictive power compared to existing
alternatives.
- Abstract(参考訳): 近年,電力系統の状態予測のリアルタイム化が注目されている。
再生可能エネルギー資源の大規模展開に伴い、エネルギーシステムに対するユニークな課題が生まれつつある。
その結果、現代の電力システムの監視、運用、確保において、電力系統の状態予測がより重要になっている。
本稿では,マルチステップ電力系統状態推定をリアルタイムに正確に予測するエンドツーエンドのディープラーニングフレームワークを提案する。
本モデルでは,マルチステップ予測が可能なシーケンス・ツー・シーケンス・フレームワークを用いる。
双方向ゲートリカレントユニット(BiGRU)をモデルに組み込んで高い予測精度を実現する。
モデルの性能は実データを用いて検証される。
実験の結果,既存モデルに比べて予測力に優れたモデルが得られた。
関連論文リスト
- Powerformer: A Transformer with Weighted Causal Attention for Time-series Forecasting [50.298817606660826]
我々は,非因果重みをスムーズな重み付き崩壊に応じて再加重する因果重みに置き換える新しいトランスフォーマーであるPowerformerを紹介する。
我々の実証実験の結果,Powerformer は公開時系列ベンチマークで最先端の精度を達成できた。
分析の結果、トレーニング中にモデルの局所性バイアスが増幅され、時系列データとパワールールに基づく注意の相互作用が示されることがわかった。
論文 参考訳(メタデータ) (2025-02-10T04:42:11Z) - PowerMamba: A Deep State Space Model and Comprehensive Benchmark for Time Series Prediction in Electric Power Systems [6.516425351601512]
予測結果と実際のグリッド結果のギャップを埋めるために時系列予測モデルが必要である。
従来の状態空間モデルと深層学習を組み合わせた多変量時系列予測モデルを提案する。
5年間の負荷、電力価格、アシラリーサービス価格、再生可能エネルギー生成にまたがるデータセットをリリースする。
論文 参考訳(メタデータ) (2024-12-09T00:23:34Z) - Enhanced Prediction of Multi-Agent Trajectories via Control Inference and State-Space Dynamics [14.694200929205975]
本稿では,状態空間動的システムモデリングに基づく軌道予測の新しい手法を提案する。
動的システムにおける状態推定の精度を高めるために,制御変数に対する新しいモデリング手法を提案する。
提案手法は,グラフニューラルネットワークと状態空間モデルを統合し,マルチエージェント相互作用の複雑さを効果的に捉える。
論文 参考訳(メタデータ) (2024-08-08T08:33:02Z) - Weather Prediction with Diffusion Guided by Realistic Forecast Processes [49.07556359513563]
気象予報に拡散モデル(DM)を適用した新しい手法を提案する。
提案手法は,同一のモデリングフレームワークを用いて,直接予測と反復予測の両方を実現できる。
我々のモデルの柔軟性と制御性は、一般の気象コミュニティにとってより信頼性の高いDLシステムに力を与えます。
論文 参考訳(メタデータ) (2024-02-06T21:28:42Z) - Deep Generative Methods for Producing Forecast Trajectories in Power
Systems [0.0]
トランスポート・システム・オペレーター(TSO)は、将来の電力系統の機能をシミュレートするための分析を行う必要がある。
これらのシミュレーションは意思決定プロセスの入力として使用される。
論文 参考訳(メタデータ) (2023-09-26T14:43:01Z) - Evaluating Distribution System Reliability with Hyperstructures Graph
Convolutional Nets [74.51865676466056]
本稿では,グラフ畳み込みネットワークとハイパー構造表現学習フレームワークを,精度,信頼性,計算効率のよい分散グリッド計画に活用する方法を示す。
数値実験の結果,提案手法は計算効率を大幅に向上させることがわかった。
論文 参考訳(メタデータ) (2022-11-14T01:29:09Z) - Learning Interpretable Deep State Space Model for Probabilistic Time
Series Forecasting [98.57851612518758]
確率的時系列予測は、その歴史に基づいて将来の分布を推定する。
本稿では,非線形エミッションモデルと遷移モデルとをネットワークによってパラメータ化した,確率的時系列予測のための深部状態空間モデルを提案する。
実験では,我々のモデルが正確かつ鋭い確率予測を生成することを示す。
論文 参考訳(メタデータ) (2021-01-31T06:49:33Z) - Learning Accurate Long-term Dynamics for Model-based Reinforcement
Learning [7.194382512848327]
より長い地平線で安定的に予測するために, 状態作用データに対する教師付き学習のための新しいパラメータ化を提案する。
シミュレーションおよび実験によるロボット作業の結果,軌道に基づくモデルにより,より正確な長期予測が得られた。
論文 参考訳(メタデータ) (2020-12-16T18:47:37Z) - Physics-Informed Gaussian Process Regression for Probabilistic States
Estimation and Forecasting in Power Grids [67.72249211312723]
電力グリッドの効率的な運転にはリアルタイム状態推定と予測が不可欠である。
PhI-GPRは3世代電力系統の位相角,角速度,風力の予測と推定に使用される。
提案手法は観測された状態と観測されていない状態の両方を正確に予測し,推定することができることを示す。
論文 参考訳(メタデータ) (2020-10-09T14:18:31Z) - Stochastically forced ensemble dynamic mode decomposition for
forecasting and analysis of near-periodic systems [65.44033635330604]
本稿では,観測力学を強制線形系としてモデル化した新しい負荷予測手法を提案する。
固有線型力学の利用は、解釈可能性やパーシモニーの観点から、多くの望ましい性質を提供することを示す。
電力グリッドからの負荷データを用いたテストケースの結果が提示される。
論文 参考訳(メタデータ) (2020-10-08T20:25:52Z) - Forecasting Photovoltaic Power Production using a Deep Learning Sequence
to Sequence Model with Attention [0.0]
本稿では,PV発電のエンド・ツー・エンド予測のための教師付きディープラーニングモデルを提案する。
提案モデルは2つの基本概念に基づいており、他のシーケンス関連分野の大幅な性能向上につながった。
その結果、新しい設計は、PV電力予測技術の現在の状態以上で実行可能であることがわかった。
論文 参考訳(メタデータ) (2020-08-06T17:20:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。