Is Information Extraction Solved by ChatGPT? An Analysis of Performance,
Evaluation Criteria, Robustness and Errors
- URL: http://arxiv.org/abs/2305.14450v1
- Date: Tue, 23 May 2023 18:17:43 GMT
- Title: Is Information Extraction Solved by ChatGPT? An Analysis of Performance,
Evaluation Criteria, Robustness and Errors
- Authors: Ridong Han, Tao Peng, Chaohao Yang, Benyou Wang, Lu Liu, Xiang Wan
- Abstract summary: We first evaluate ChatGPT's performance on 17 datasets with 14 IE sub-tasks under the zero-shot, few-shot and chain-of-thought scenarios.
We then analyze the robustness of ChatGPT on 14 IE sub-tasks, and find that: 1) ChatGPT rarely outputs invalid responses; 2) Irrelevant context and long-tail target types greatly affect ChatGPT's performance; and 3) ChatGPT cannot understand well the subject-object relationships in RE task.
- Score: 14.911130381374793
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: ChatGPT has stimulated the research boom in the field of large language
models. In this paper, we assess the capabilities of ChatGPT from four
perspectives including Performance, Evaluation Criteria, Robustness and Error
Types. Specifically, we first evaluate ChatGPT's performance on 17 datasets
with 14 IE sub-tasks under the zero-shot, few-shot and chain-of-thought
scenarios, and find a huge performance gap between ChatGPT and SOTA results.
Next, we rethink this gap and propose a soft-matching strategy for evaluation
to more accurately reflect ChatGPT's performance. Then, we analyze the
robustness of ChatGPT on 14 IE sub-tasks, and find that: 1) ChatGPT rarely
outputs invalid responses; 2) Irrelevant context and long-tail target types
greatly affect ChatGPT's performance; 3) ChatGPT cannot understand well the
subject-object relationships in RE task. Finally, we analyze the errors of
ChatGPT, and find that "unannotated spans" is the most dominant error type.
This raises concerns about the quality of annotated data, and indicates the
possibility of annotating data with ChatGPT. The data and code are released at
Github site.
Related papers
- An Evaluation of Large Language Models on Text Summarization Tasks Using Prompt Engineering Techniques [0.0]
Large Language Models (LLMs) continue to advance natural language processing with their ability to generate human-like text.<n>We present a systematic evaluation of six LLMs across four datasets: CNN/Daily Mail and NewsRoom (news), SAMSum (dialog), and ArXiv (scientific)<n>Our study evaluates the performance using the ROUGE and BERTScore metrics.<n>For Long documents, introduce a sentence-based chunking strategy that enables LLMs with shorter context windows to summarize extended inputs in multiple stages.
arXiv Detail & Related papers (2025-07-07T15:34:05Z) - An Empirical Study on Information Extraction using Large Language Models [36.090082785047855]
Human-like large language models (LLMs) have proven to be very helpful for many natural language processing (NLP) related tasks.
We propose and analyze the effects of a series of simple prompt-based methods on GPT-4's information extraction ability.
arXiv Detail & Related papers (2024-08-31T07:10:16Z) - A Universal Prompting Strategy for Extracting Process Model Information from Natural Language Text using Large Language Models [0.8899670429041453]
We show that generative large language models (LLMs) can solve NLP tasks with very high quality without the need for extensive data.
Based on a novel prompting strategy, we show that LLMs are able to outperform state-of-the-art machine learning approaches.
arXiv Detail & Related papers (2024-07-26T06:39:35Z) - C-ICL: Contrastive In-context Learning for Information Extraction [54.39470114243744]
c-ICL is a novel few-shot technique that leverages both correct and incorrect sample constructions to create in-context learning demonstrations.
Our experiments on various datasets indicate that c-ICL outperforms previous few-shot in-context learning methods.
arXiv Detail & Related papers (2024-02-17T11:28:08Z) - Mastering the Task of Open Information Extraction with Large Language
Models and Consistent Reasoning Environment [52.592199835286394]
Open Information Extraction (OIE) aims to extract objective structured knowledge from natural texts.
Large language models (LLMs) have exhibited remarkable in-context learning capabilities.
arXiv Detail & Related papers (2023-10-16T17:11:42Z) - Efficient Finetuning Large Language Models For Vietnamese Chatbot [1.2075778142867704]
Large language models (LLMs) have been shown to achieve remarkable performance across a variety of natural language tasks.
We leverage large-scale instruction-following datasets from open-source projects, namely Alpaca, GPT4All, and Chat-Doctor.
We utilize parameter-efficient tuning through Low-Rank Adaptation (LoRA) on two open LLMs, resulting four models: Bloomz-Chat, Bloomz-Doctor, GPTJ-Chat, GPTJ-Doctor.
arXiv Detail & Related papers (2023-09-09T00:11:53Z) - Large Language Models as Data Preprocessors [9.99065004972981]
Large Language Models (LLMs) have marked a significant advancement in artificial intelligence.
This study explores their potential in data preprocessing, a critical stage in data mining and analytics applications.
We propose an LLM-based framework for data preprocessing, which integrates cutting-edge prompt engineering techniques.
arXiv Detail & Related papers (2023-08-30T23:28:43Z) - Metacognitive Prompting Improves Understanding in Large Language Models [12.112914393948415]
We introduce Metacognitive Prompting (MP), a strategy inspired by human introspective reasoning processes.
We conduct experiments on four prevalent Large Language Models (LLMs) across ten natural language understanding (NLU) datasets.
MP consistently outperforms existing prompting methods in both general and domain-specific NLU tasks.
arXiv Detail & Related papers (2023-08-10T05:10:17Z) - Aligning Large Language Models with Human: A Survey [53.6014921995006]
Large Language Models (LLMs) trained on extensive textual corpora have emerged as leading solutions for a broad array of Natural Language Processing (NLP) tasks.
Despite their notable performance, these models are prone to certain limitations such as misunderstanding human instructions, generating potentially biased content, or factually incorrect information.
This survey presents a comprehensive overview of these alignment technologies, including the following aspects.
arXiv Detail & Related papers (2023-07-24T17:44:58Z) - LLMs for Knowledge Graph Construction and Reasoning: Recent Capabilities and Future Opportunities [66.36633042421387]
Large Language Models (LLMs) for Knowledge Graph (KG) construction and reasoning evaluated.
We propose AutoKG, a multi-agent-based approach employing LLMs and external sources for KG construction and reasoning.
arXiv Detail & Related papers (2023-05-22T15:56:44Z) - A systematic evaluation of large language models for biomedical natural language processing: benchmarks, baselines, and recommendations [22.668383945059762]
We present a systematic evaluation of four representative Large Language Models (LLMs) across 12 BioNLP datasets.
The evaluation is conducted under four settings: zero-shot, static few-shot, dynamic K-nearest few-shot, and fine-tuning.
We compare these models against state-of-the-art (SOTA) approaches that fine-tune (domain-specific) BERT or BART models.
arXiv Detail & Related papers (2023-05-10T13:40:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.