論文の概要: Statistical post-processing of visibility ensemble forecasts
- arxiv url: http://arxiv.org/abs/2305.15325v1
- Date: Wed, 24 May 2023 16:41:36 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-25 14:22:52.466453
- Title: Statistical post-processing of visibility ensemble forecasts
- Title(参考訳): 可視性アンサンブル予測の統計的後処理
- Authors: S\'andor Baran and M\'aria Lakatos
- Abstract要約: 局所的,半局所的,局所的に訓練された比例確率対数回帰(POLR)と多層パーセプトロン(MLP)ニューラルネットワーク分類器の予測性能について検討した。
気候学的な予測は生のアンサンブルを広いマージンで上回るが、後処理により予測スキルが大幅に向上することを示した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: To be able to produce accurate and reliable predictions of visibility has
crucial importance in aviation meteorology, as well as in water- and road
transportation. Nowadays, several meteorological services provide ensemble
forecasts of visibility; however, the skill, and reliability of visibility
predictions are far reduced compared to other variables, such as temperature or
wind speed. Hence, some form of calibration is strongly advised, which usually
means estimation of the predictive distribution of the weather quantity at hand
either by parametric or non-parametric approaches, including also machine
learning-based techniques. As visibility observations - according to the
suggestion of the World Meteorological Organization - are usually reported in
discrete values, the predictive distribution for this particular variable is a
discrete probability law, hence calibration can be reduced to a classification
problem. Based on visibility ensemble forecasts of the European Centre for
Medium-Range Weather Forecasts covering two slightly overlapping domains in
Central and Western Europe and two different time periods, we investigate the
predictive performance of locally, semi-locally and regionally trained
proportional odds logistic regression (POLR) and multilayer perceptron (MLP)
neural network classifiers. We show that while climatological forecasts
outperform the raw ensemble by a wide margin, post-processing results in
further substantial improvement in forecast skill and in general, POLR models
are superior to their MLP counterparts.
- Abstract(参考訳): 可視性の正確かつ信頼性の高い予測を可能にすることは、航空気象学だけでなく、水や道路輸送においても重要である。
現在、いくつかの気象サービスは可視性の予測を提供しているが、その技術や可視性予測の信頼性は温度や風速といった他の変数と比べてはるかに低下している。
したがって、ある種のキャリブレーションは強く推奨され、通常は、機械学習ベースの技術を含むパラメトリックまたは非パラメトリックアプローチによって、手前の気象量の予測分布を推定することを意味する。
世界気象機関(World Meteorological Organization)の提案によれば、可視性観測は通常離散値で報告されるため、この変数の予測分布は離散確率法則であり、キャリブレーションを分類問題に還元することができる。
中央・西欧の2つのやや重なり合う領域と2つの異なる期間をカバーした欧州中レージ気象予報センターの可視的アンサンブル予測に基づき、局所的、半局所的に訓練された比例オッズ対数回帰(POLR)と多層パーセプトロン(MLP)ニューラルネットワーク分類器の予測性能について検討した。
気候学的な予測は生のアンサンブルを広範囲に上回るが,ポストプロセッシングにより予測能力は向上し,一般にPOLRモデルの方がMPPモデルよりも優れていることを示す。
関連論文リスト
- Forecast reconciliation for vaccine supply chain optimization [61.13962963550403]
ワクチンサプライチェーン最適化は階層的な時系列予測の恩恵を受けることができる。
異なる階層レベルの予測は、上位レベルの予測が下位レベルの予測の総和と一致しないときに不整合となる。
我々は2010年から2021年にかけてのGSKの販売データを階層的時系列としてモデル化し,ワクチン販売予測問題に取り組む。
論文 参考訳(メタデータ) (2023-05-02T14:34:34Z) - Beyond S-curves: Recurrent Neural Networks for Technology Forecasting [60.82125150951035]
我々は機械学習と時系列予測の最近の進歩を生かしたオートコーダアプローチを開発した。
S曲線予測は、単純なARIMAベースラインに匹敵する平均パーセンテージ誤差(MAPE)を示す。
我々のオートエンコーダアプローチは、2番目に高い結果に対して平均13.5%改善する。
論文 参考訳(メタデータ) (2022-11-28T14:16:22Z) - A two-step machine learning approach to statistical post-processing of
weather forecasts for power generation [0.0]
風と太陽のエネルギー源は非常に揮発性があり、グリッドオペレーターの計画が困難である。
本研究では、アンサンブル天気予報の校正のための2段階の機械学習に基づくアプローチを提案する。
論文 参考訳(メタデータ) (2022-07-15T16:38:14Z) - PROFHIT: Probabilistic Robust Forecasting for Hierarchical Time-series [70.22948987701051]
確率的階層的時系列予測は時系列予測の重要な変種である。
以前の研究は、データセットが与えられた階層的関係と常に一致しており、現実世界のデータセットに適応していないことを静かに仮定している。
ProFHITは,階層全体の分布予測を共同でモデル化する完全確率的階層予測モデルである。
論文 参考訳(メタデータ) (2022-06-16T06:13:53Z) - Forecasting large-scale circulation regimes using deformable
convolutional neural networks and global spatiotemporal climate data [86.1450118623908]
変形可能な畳み込みニューラルネットワーク(deCNN)に基づく教師あり機械学習手法の検討
今後1~15日にわたって北大西洋-欧州の気象条件を予測した。
より広い視野で見れば、通常の畳み込みニューラルネットワークよりも5~6日を超えるリードタイムでかなり優れた性能を発揮することが分かる。
論文 参考訳(メタデータ) (2022-02-10T11:37:00Z) - LoMEF: A Framework to Produce Local Explanations for Global Model Time
Series Forecasts [2.3096751699592137]
複数の時系列にまたがってトレーニングされたグローバル予測モデル(GFM)は、多くの予測競合や実世界のアプリケーションにおいて優れた結果を示している。
しかしながら、GFMは通常、特に特定の時系列に対する解釈可能性に欠ける。
本稿では,GFMからの予測を説明するために,局所モデルに依存しない新しい解法を提案する。
論文 参考訳(メタデータ) (2021-11-13T00:17:52Z) - Machine learning methods for postprocessing ensemble forecasts of wind
gusts: A systematic comparison [0.0]
系統的な誤りを正すためにアンサンブルの天気予報を後処理することは、研究や運用において標準的な慣行となっている。
本稿では,確率論的風速予測のための8つの統計的および機械学習手法の総合的なレビューと体系的比較を行う。
本稿では,様々な確率予測型を出力とする局所適応型ニューラルネットワークの柔軟なフレームワークを提案する。
論文 参考訳(メタデータ) (2021-06-17T14:03:29Z) - Calibration of wind speed ensemble forecasts for power generation [0.0]
過去数十年間、風力発電は欧州連合で2番目に大きな電力供給源となり、電力需要の16%を占めた。
そのボラティリティのため、風力エネルギーを電気グリッドにうまく統合するには、正確な短距離風力予測が必要である。
生のアンサンブルと比較すると,ポストプロセッシングは常に確率的および精度の高い点予測のキャリブレーションを改善する。
論文 参考訳(メタデータ) (2021-04-30T11:18:03Z) - Learning Interpretable Deep State Space Model for Probabilistic Time
Series Forecasting [98.57851612518758]
確率的時系列予測は、その歴史に基づいて将来の分布を推定する。
本稿では,非線形エミッションモデルと遷移モデルとをネットワークによってパラメータ化した,確率的時系列予測のための深部状態空間モデルを提案する。
実験では,我々のモデルが正確かつ鋭い確率予測を生成することを示す。
論文 参考訳(メタデータ) (2021-01-31T06:49:33Z) - A generative adversarial network approach to (ensemble) weather
prediction [91.3755431537592]
本研究では,500hPaの圧力レベル,2m温度,24時間の総降水量を予測するために,条件付き深部畳み込み生成対向ネットワークを用いた。
提案されたモデルは、2019年に関連する気象分野を予測することを目的として、2015年から2018年までの4年間のERA5の再分析データに基づいて訓練されている。
論文 参考訳(メタデータ) (2020-06-13T20:53:17Z) - Machine learning for total cloud cover prediction [0.0]
本稿では,多層パーセプトロン(MLP)ニューラルネットワーク,勾配促進機(GBM)およびランダムフォレスト(RF)法を用いた後処理の性能について検討する。
生のアンサンブルと比較して、全ての校正法は予測スキルを著しく向上させる。
RFモデルは予測性能が最小となる一方、POLRとGBMのアプローチは最良である。
論文 参考訳(メタデータ) (2020-01-16T17:13:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。