論文の概要: Tackling Size Generalization of Graph Neural Networks on Biological Data from a Spectral Perspective
- arxiv url: http://arxiv.org/abs/2305.15611v5
- Date: Fri, 01 Aug 2025 06:11:16 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-04 18:08:53.359063
- Title: Tackling Size Generalization of Graph Neural Networks on Biological Data from a Spectral Perspective
- Title(参考訳): スペクトルから見た生体データに基づくグラフニューラルネットワークの規模一般化
- Authors: Gaotang Li, Danai Koutra, Yujun Yan,
- Abstract要約: グラフニューラルネットワーク(GNN)におけるサイズ誘起分布シフトのタイプを特定し,特徴付ける
サブグラフパターンによって駆動されるスペクトル差は,GNNの大規模で見えないグラフにおける性能と強く相関していることがわかった。
本稿では,GNNの重要部分グラフパターンに対する認識を高めるための3つのモデルに依存しない手法を提案する。
- 参考スコア(独自算出の注目度): 14.250457735202671
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We address the key challenge of size-induced distribution shifts in graph neural networks (GNNs) and their impact on the generalization of GNNs to larger graphs. Existing literature operates under diverse assumptions about distribution shifts, resulting in varying conclusions about the generalizability of GNNs. In contrast to prior work, we adopt a data-driven approach to identify and characterize the types of size-induced distribution shifts and explore their impact on GNN performance from a spectral standpoint, a perspective that has been largely underexplored. Leveraging the significant variance in graph sizes in real biological datasets, we analyze biological graphs and find that spectral differences, driven by subgraph patterns (e.g., average cycle length), strongly correlate with GNN performance on larger, unseen graphs. Based on these insights, we propose three model-agnostic strategies to enhance GNNs' awareness of critical subgraph patterns, identifying size-intensive attention as the most effective approach. Extensive experiments with six GNN architectures and seven model-agnostic strategies across five datasets show that our size-intensive attention strategy significantly improves graph classification on test graphs 2 to 10 times larger than the training graphs, boosting F1 scores by up to 8% over strong baselines.
- Abstract(参考訳): グラフニューラルネットワーク(GNN)におけるサイズ誘起分布シフトの鍵となる課題と,GNNの大規模グラフへの一般化に対する影響に対処する。
既存の文献は分布シフトに関する様々な仮定の下で機能し、結果としてGNNの一般化可能性に関する様々な結論が導かれる。
従来の研究とは対照的に、我々はサイズによる分散シフトのタイプを特定し、特徴付けするデータ駆動アプローチを採用し、スペクトルの観点からGNNの性能への影響を探究する。
実バイオデータセットにおけるグラフサイズの有意なばらつきを利用して、生物学的グラフを解析し、サブグラフパターン(平均サイクル長など)によって引き起こされるスペクトル差が、より大きな未確認グラフ上でのGNN性能と強く相関していることを見出した。
これらの知見に基づいて,GNNの重要部分グラフパターンに対する認識を高めるための3つのモデルに依存しない戦略を提案する。
5つのデータセットにわたる6つのGNNアーキテクチャと7つのモデルに依存しない戦略による大規模な実験により、我々のサイズ中心の注意戦略は、トレーニンググラフの2倍から10倍のグラフ分類を著しく改善し、F1スコアが強いベースラインよりも最大8%向上することを示した。
関連論文リスト
- Revisiting Graph Neural Networks on Graph-level Tasks: Comprehensive Experiments, Analysis, and Improvements [54.006506479865344]
グラフレベルグラフニューラルネットワーク(GNN)のための統一評価フレームワークを提案する。
このフレームワークは、さまざまなデータセットにわたるGNNを評価するための標準化された設定を提供する。
また,表現性の向上と一般化機能を備えた新しいGNNモデルを提案する。
論文 参考訳(メタデータ) (2025-01-01T08:48:53Z) - Towards Data-centric Machine Learning on Directed Graphs: a Survey [23.498557237805414]
本稿では,有向グラフ学習研究のための新しい分類法を提案する。
我々はこれらの手法をデータ中心の観点から再検討し、データ表現の理解と改善に重点を置いている。
我々はこの分野における主要な機会と課題を特定し、有向グラフ学習における将来の研究と開発を導く洞察を提供する。
論文 参考訳(メタデータ) (2024-11-28T06:09:12Z) - A Manifold Perspective on the Statistical Generalization of Graph Neural Networks [84.01980526069075]
我々は、スペクトル領域の多様体からサンプリングされたグラフ上のGNNの統計的一般化理論を確立するために多様体の視点を取る。
我々はGNNの一般化境界が対数スケールのグラフのサイズとともに線形に減少し、フィルタ関数のスペクトル連続定数とともに線形的に増加することを証明した。
論文 参考訳(メタデータ) (2024-06-07T19:25:02Z) - Enhancing Size Generalization in Graph Neural Networks through Disentangled Representation Learning [7.448831299106425]
DISGENは、グラフ表現からサイズ因子をアンタングルするために設計された、モデルに依存しないフレームワークである。
実験の結果, DISGENは実世界のデータセットにおいて, 最先端のモデルよりも最大6%優れていた。
論文 参考訳(メタデータ) (2024-06-07T03:19:24Z) - Spectral Greedy Coresets for Graph Neural Networks [61.24300262316091]
ノード分類タスクにおける大規模グラフの利用は、グラフニューラルネットワーク(GNN)の現実的な応用を妨げる
本稿では,GNNのグラフコアセットについて検討し,スペクトル埋め込みに基づくエゴグラフの選択により相互依存の問題を回避する。
我々のスペクトルグレディグラフコアセット(SGGC)は、数百万のノードを持つグラフにスケールし、モデル事前学習の必要性を排除し、低ホモフィリーグラフに適用する。
論文 参考訳(メタデータ) (2024-05-27T17:52:12Z) - Towards Causal Classification: A Comprehensive Study on Graph Neural
Networks [9.360596957822471]
グラフ構造化データを処理するグラフニューラルネットワーク(GNN)は因果解析の可能性を拡大した。
我々の研究は、9つのベンチマークグラフ分類モデルに展開し、7つのデータセットでその強度と汎用性をテストした。
本研究は,多種多様なデータ中心分野におけるGNNの理解と実用化の促進に有効である。
論文 参考訳(メタデータ) (2024-01-27T15:35:05Z) - BHGNN-RT: Network embedding for directed heterogeneous graphs [8.7024326813104]
本稿では,BHGNN-RTを用いた双方向ヘテロジニアスグラフニューラルネットワークの組込み手法を提案する。
BHGNN-RTの有効性と有効性を検証するために, 各種データセットの広範囲な実験を行った。
BHGNN-RTは、ノード分類と教師なしクラスタリングタスクの両方においてベンチマーク手法よりも優れた、最先端のパフォーマンスを実現する。
論文 参考訳(メタデータ) (2023-11-24T10:56:09Z) - Graph Out-of-Distribution Generalization with Controllable Data
Augmentation [51.17476258673232]
グラフニューラルネットワーク(GNN)は,グラフ特性の分類において異常な性能を示した。
トレーニングとテストデータの選択バイアスが原因で、分散偏差が広まっています。
仮想サンプルの分布偏差を測定するためのOODキャリブレーションを提案する。
論文 参考訳(メタデータ) (2023-08-16T13:10:27Z) - Addressing the Impact of Localized Training Data in Graph Neural
Networks [0.0]
グラフニューラルネットワーク(GNN)は、グラフ構造化データから学習において顕著な成功を収めた。
本稿では,グラフの局所化部分集合に対するGNNのトレーニングの影響を評価することを目的とする。
本稿では,局所化学習データとグラフ推論との分散不一致を最小化する正規化手法を提案する。
論文 参考訳(メタデータ) (2023-07-24T11:04:22Z) - Relation Embedding based Graph Neural Networks for Handling
Heterogeneous Graph [58.99478502486377]
我々は、同種GNNが不均一グラフを扱うのに十分な能力を持つように、シンプルで効率的なフレームワークを提案する。
具体的には、エッジ型関係と自己ループ接続の重要性を埋め込むために、関係1つのパラメータのみを使用する関係埋め込みベースのグラフニューラルネットワーク(RE-GNN)を提案する。
論文 参考訳(メタデータ) (2022-09-23T05:24:18Z) - Towards Better Generalization with Flexible Representation of
Multi-Module Graph Neural Networks [0.27195102129094995]
ランダムグラフ生成器を用いて,グラフサイズと構造特性がGNNの予測性能に与える影響について検討する。
本稿では,GNNが未知のグラフに一般化できるかどうかを決定する上で,平均ノード次数が重要な特徴であることを示す。
集約された入力に対して単一の正準非線形変換を一般化することにより、ネットワークが新しいグラフに柔軟に対応可能なマルチモジュールGNNフレームワークを提案する。
論文 参考訳(メタデータ) (2022-09-14T12:13:59Z) - MentorGNN: Deriving Curriculum for Pre-Training GNNs [61.97574489259085]
本稿では,グラフ間のGNNの事前学習プロセスの監視を目的とした,MentorGNNというエンドツーエンドモデルを提案する。
我々は、事前学習したGNNの一般化誤差に自然かつ解釈可能な上限を導出することにより、関係データ(グラフ)に対するドメイン適応の問題に新たな光を当てた。
論文 参考訳(メタデータ) (2022-08-21T15:12:08Z) - Graph Feature Gating Networks [31.20878472589719]
本稿では,グラフ信号の雑音化問題に基づく一般グラフ特徴ゲーティングネットワーク(gfgn)を提案する。
また、GFGNの下で3つのグラフフィルターを導入し、機能寸法から異なるレベルのコントリビューションを可能にします。
論文 参考訳(メタデータ) (2021-05-10T16:33:58Z) - Robust Optimization as Data Augmentation for Large-scale Graphs [117.2376815614148]
学習中に勾配に基づく逆方向摂動を伴うノード特徴を反復的に拡張するFLAG(Free Large-scale Adversarial Augmentation on Graphs)を提案する。
FLAGはグラフデータに対する汎用的なアプローチであり、ノード分類、リンク予測、グラフ分類タスクで普遍的に機能する。
論文 参考訳(メタデータ) (2020-10-19T21:51:47Z) - From Local Structures to Size Generalization in Graph Neural Networks [53.3202754533658]
グラフニューラルネットワーク(GNN)は、さまざまなサイズのグラフを処理することができる。
特に小さなグラフから大きなグラフまで、サイズをまたいで一般化する能力は、まだよく理解されていない。
論文 参考訳(メタデータ) (2020-10-17T19:36:54Z) - Towards Deeper Graph Neural Networks [63.46470695525957]
グラフ畳み込みは近傍の集約を行い、最も重要なグラフ操作の1つである。
いくつかの最近の研究で、この性能劣化は過度に滑らかな問題に起因している。
本研究では,大きな受容領域からの情報を適応的に組み込むディープ適応グラフニューラルネットワーク(DAGNN)を提案する。
論文 参考訳(メタデータ) (2020-07-18T01:11:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。