論文の概要: A New Era of Mobility: Exploring Digital Twin Applications in Autonomous
Vehicular Systems
- arxiv url: http://arxiv.org/abs/2305.16158v1
- Date: Tue, 9 May 2023 06:39:57 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-28 04:31:16.024740
- Title: A New Era of Mobility: Exploring Digital Twin Applications in Autonomous
Vehicular Systems
- Title(参考訳): 新しいモビリティの時代:自律車体システムにおけるディジタル双極子応用の探求
- Authors: S M Mostaq Hossain, Sohag Kumar Saha, Shampa Banik, Trapa Banik
- Abstract要約: デジタルツイン(Digital twins、DT)は、物理的オブジェクトやプロセスの仮想表現で、実際の環境から情報を収集して、物理的ツインの現在と将来の振る舞いを表現、検証、複製することができる。
製造、自動車、医療、スマートシティなど、さまざまな分野でDTが普及している。
我々はDTとその重要な特徴に対処し、正確なデータ収集、リアルタイム分析、効率的なシミュレーション機能を強調しながら、パフォーマンスと信頼性の向上におけるそれらの役割を強調した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Digital Twins (DTs) are virtual representations of physical objects or
processes that can collect information from the real environment to represent,
validate, and replicate the physical twin's present and future behavior. The
DTs are becoming increasingly prevalent in a variety of fields, including
manufacturing, automobiles, medicine, smart cities, and other related areas. In
this paper, we presented a systematic reviews on DTs in the autonomous
vehicular industry. We addressed DTs and their essential characteristics,
emphasized on accurate data collection, real-time analytics, and efficient
simulation capabilities, while highlighting their role in enhancing performance
and reliability. Next, we explored the technical challenges and central
technologies of DTs. We illustrated the comparison analysis of different
methodologies that have been used for autonomous vehicles in smart cities.
Finally, we addressed the application challenges and limitations of DTs in the
autonomous vehicular industry.
- Abstract(参考訳): デジタルツイン(Digital Twins、DT)は、物理的オブジェクトやプロセスの仮想表現で、実際の環境から情報を収集して、物理双生児の現在と将来の振る舞いを表現、検証、再現することができる。
DTは、製造業、自動車、医療、スマートシティなど、さまざまな分野において、ますます普及しつつある。
本稿では,自律車両産業におけるdtsの体系的評価について述べる。
我々はDTとその重要な特徴に対処し、正確なデータ収集、リアルタイム分析、効率的なシミュレーション機能を強調し、性能と信頼性の向上におけるそれらの役割を強調した。
次に、dtsの技術課題と中央技術について検討した。
我々は,スマートシティにおける自動運転車における様々な手法の比較分析を行った。
最後に,自動運転車産業におけるdtsの適用課題と限界について論じた。
関連論文リスト
- Exploring the Interplay Between Video Generation and World Models in Autonomous Driving: A Survey [61.39993881402787]
世界モデルとビデオ生成は、自動運転の領域において重要な技術である。
本稿では,この2つの技術の関係について検討する。
映像生成モデルと世界モデルとの相互作用を分析することにより,重要な課題と今後の研究方向性を明らかにする。
論文 参考訳(メタデータ) (2024-11-05T08:58:35Z) - Towards an Extensible Model-Based Digital Twin Framework for Space Launch Vehicles [12.153961316909852]
Digital Twin(DT)の概念は、ドメイン間の異なる抽象化レベルにあるシステムにますます適用されています。
DTの定義は明確ではなく、DTの能力を完全に実現するための明確な経路も存在しない。
本稿では,モデルに基づくDT開発手法を提案するDT成熟度行列を提案する。
論文 参考訳(メタデータ) (2024-06-04T11:31:00Z) - Digital Twin Mobility Profiling: A Spatio-Temporal Graph Learning
Approach [9.56255685195115]
モビリティ・プロファイリングは、モビリティ・データから都市交通の潜在的なパターンを抽出することができる。
デジタルツイン(DT)技術は、コスト効率とパフォーマンス最適化管理の道を開く。
本稿では,移動時ネットワークDTモデルを用いてノードプロファイルを学習するためのデジタルツインモビリティ・プロファイリングフレームワークを提案する。
論文 参考訳(メタデータ) (2024-02-06T06:37:43Z) - Open-sourced Data Ecosystem in Autonomous Driving: the Present and Future [130.87142103774752]
このレビューは、70以上のオープンソースの自動運転データセットを体系的に評価する。
高品質なデータセットの作成の基礎となる原則など、さまざまな側面に関する洞察を提供する。
また、解決を保障する科学的、技術的課題も検討している。
論文 参考訳(メタデータ) (2023-12-06T10:46:53Z) - MultiIoT: Benchmarking Machine Learning for the Internet of Things [70.74131118309967]
次世代の機械学習システムは、物理的世界に対する知覚と相互作用に長けなければならない。
運動、熱、位置情報、深度、無線信号、ビデオ、オーディオからの知覚データは、物理環境の状態をモデル化するためにますます使われています。
既存の取り組みは、しばしば単一の感覚的モダリティまたは予測タスクに特化している。
本稿は、12のモダリティと8つの現実世界タスクから115万以上のサンプルを含む、これまでで最も拡張的で統一されたIoTベンチマークであるMultiIoTを提案する。
論文 参考訳(メタデータ) (2023-11-10T18:13:08Z) - Enabling Spatial Digital Twins: Technologies, Challenges, and Future
Research Directions [13.210510790794006]
デジタルツイン(Digital Twin, DT)は、物理オブジェクトやシステムの仮想レプリカであり、その動作と特性を監視し、分析し、最適化するために作成される。
空間デジタル双生児 (SDT) は、物理的実体の地理空間的側面を強調する特定のタイプのデジタル双生児である。
我々は,SDTを階層化して構築する際の空間技術について,初めて体系的に解析を行った。
論文 参考訳(メタデータ) (2023-06-11T06:28:44Z) - Generative AI-empowered Simulation for Autonomous Driving in Vehicular
Mixed Reality Metaverses [130.15554653948897]
車両混合現実(MR)メタバースでは、物理的実体と仮想実体の間の距離を克服することができる。
現実的なデータ収集と物理世界からの融合による大規模交通・運転シミュレーションは困難かつコストがかかる。
生成AIを利用して、無制限の条件付きトラフィックを合成し、シミュレーションでデータを駆動する自律運転アーキテクチャを提案する。
論文 参考訳(メタデータ) (2023-02-16T16:54:10Z) - Digital Twin Applications in Urban Logistics: An Overview [4.084365114504618]
デジタルツイン(Digital twins、DT)は、現実の物理システムの仮想レプリカである。
本稿では,DTを都市物流ネットワークに容易に適用可能なフレームワークを提供する。
論文 参考訳(メタデータ) (2023-02-01T14:48:01Z) - VISTA 2.0: An Open, Data-driven Simulator for Multimodal Sensing and
Policy Learning for Autonomous Vehicles [131.2240621036954]
VISTAはオープンソースのデータ駆動シミュレータで、複数のタイプのセンサーを自律走行車に組み込む。
高忠実で実世界のデータセットを使用して、VISTAはRGBカメラ、3D LiDAR、イベントベースのカメラを表現し、シミュレートする。
センサタイプ毎に知覚制御ポリシーをトレーニングし,テストする能力を示し,フルスケールの自律走行車への展開を通じて,このアプローチのパワーを示す。
論文 参考訳(メタデータ) (2021-11-23T18:58:10Z) - Digital Twins: State of the Art Theory and Practice, Challenges, and
Open Research Questions [62.67593386796497]
この研究は、様々なDT機能と現在のアプローチ、デジタルツインの実装と導入の遅れの背景にある欠点と理由を探求する。
この遅延の主な理由は、普遍的な参照フレームワークの欠如、ドメイン依存、共有データのセキュリティ上の懸念、デジタルツインの他の技術への依存、定量的メトリクスの欠如である。
論文 参考訳(メタデータ) (2020-11-02T19:08:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。