論文の概要: AI-Powered Urban Transportation Digital Twin: Methods and Applications
- arxiv url: http://arxiv.org/abs/2501.10396v1
- Date: Mon, 30 Dec 2024 02:52:19 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-26 03:08:30.588343
- Title: AI-Powered Urban Transportation Digital Twin: Methods and Applications
- Title(参考訳): AIを活用した都市交通デジタル双生児:方法と応用
- Authors: Xuan Di, Yongjie Fu, Mehmet K. Turkcan, Mahshid Ghasemi, Zhaobin Mo, Chengbo Zang, Abhishek Adhikari, Zoran Kostic, Gil Zussman,
- Abstract要約: 本稿では,都市交通管理におけるディジタル双生児(DT)の手法と応用に関する調査報告を行う。
まず、サイバー物理システムを活用したDTパイプラインをレビューし、ニューヨーク市の現実世界のテストベッドにデプロイされたDTアーキテクチャを提案する。
- 参考スコア(独自算出の注目度): 6.812947567117796
- License:
- Abstract: We present a survey paper on methods and applications of digital twins (DT) for urban traffic management. While the majority of studies on the DT focus on its "eyes," which is the emerging sensing and perception like object detection and tracking, what really distinguishes the DT from a traditional simulator lies in its ``brain," the prediction and decision making capabilities of extracting patterns and making informed decisions from what has been seen and perceived. In order to add values to urban transportation management, DTs need to be powered by artificial intelligence and complement with low-latency high-bandwidth sensing and networking technologies. We will first review the DT pipeline leveraging cyberphysical systems and propose our DT architecture deployed on a real-world testbed in New York City. This survey paper can be a pointer to help researchers and practitioners identify challenges and opportunities for the development of DTs; a bridge to initiate conversations across disciplines; and a road map to exploiting potentials of DTs for diverse urban transportation applications.
- Abstract(参考訳): 本稿では,都市交通管理におけるディジタル双生児(DT)の手法と応用に関する調査報告を行う。
DTに関するほとんどの研究は、オブジェクトの検出や追跡のような新たな知覚と認識に焦点を当てているが、DTと従来のシミュレータを区別するものは、パターンを抽出し、認識されたものから情報的決定を下すことの予測と意思決定能力である‘脳’にある。
都市交通管理に価値を加えるためには、DTは人工知能によって駆動され、低遅延の高帯域幅センシングおよびネットワーク技術と補完する必要がある。
まず、サイバー物理システムを活用したDTパイプラインをレビューし、ニューヨーク市の現実世界のテストベッドにデプロイされたDTアーキテクチャを提案する。
本研究は,研究者や実践者がDTを開発する上での課題や機会を特定するための指標となり得る。
関連論文リスト
- Towards an Extensible Model-Based Digital Twin Framework for Space Launch Vehicles [12.153961316909852]
Digital Twin(DT)の概念は、ドメイン間の異なる抽象化レベルにあるシステムにますます適用されています。
DTの定義は明確ではなく、DTの能力を完全に実現するための明確な経路も存在しない。
本稿では,モデルに基づくDT開発手法を提案するDT成熟度行列を提案する。
論文 参考訳(メタデータ) (2024-06-04T11:31:00Z) - Networking Systems for Video Anomaly Detection: A Tutorial and Survey [55.28514053969056]
ビデオ異常検出(VAD)は人工知能(AI)コミュニティにおける基本的な研究課題である。
本稿では,各種深層学習駆動型VAD経路の基本前提,学習フレームワーク,適用シナリオについて述べる。
我々は、産業用IoTおよびスマート都市における最新のNSVAD研究と、デプロイ可能なNSVADのためのエンドクラウド共同アーキテクチャを紹介します。
論文 参考訳(メタデータ) (2024-05-16T02:00:44Z) - Multi-Tier Computing-Enabled Digital Twin in 6G Networks [50.236861239246835]
産業4.0では、製造業、自動車、医療などの産業がDTベースの開発を急速に採用している。
これまでの主な課題は、通信とコンピューティングリソースに対する高い要求と、プライバシとセキュリティに関する懸念だった。
新たなDTで低レイテンシと高セキュリティを実現するため,エッジ/フォグコンピューティングとクラウドコンピューティングを組み合わせたマルチ層コンピューティングが提案されている。
論文 参考訳(メタデータ) (2023-12-28T13:02:53Z) - Enabling Spatial Digital Twins: Technologies, Challenges, and Future
Research Directions [13.210510790794006]
デジタルツイン(Digital Twin, DT)は、物理オブジェクトやシステムの仮想レプリカであり、その動作と特性を監視し、分析し、最適化するために作成される。
空間デジタル双生児 (SDT) は、物理的実体の地理空間的側面を強調する特定のタイプのデジタル双生児である。
我々は,SDTを階層化して構築する際の空間技術について,初めて体系的に解析を行った。
論文 参考訳(メタデータ) (2023-06-11T06:28:44Z) - A New Era of Mobility: Exploring Digital Twin Applications in Autonomous
Vehicular Systems [0.0]
デジタルツイン(Digital twins、DT)は、物理的オブジェクトやプロセスの仮想表現で、実際の環境から情報を収集して、物理的ツインの現在と将来の振る舞いを表現、検証、複製することができる。
製造、自動車、医療、スマートシティなど、さまざまな分野でDTが普及している。
我々はDTとその重要な特徴に対処し、正確なデータ収集、リアルタイム分析、効率的なシミュレーション機能を強調しながら、パフォーマンスと信頼性の向上におけるそれらの役割を強調した。
論文 参考訳(メタデータ) (2023-05-09T06:39:57Z) - Generative AI-empowered Simulation for Autonomous Driving in Vehicular
Mixed Reality Metaverses [130.15554653948897]
車両混合現実(MR)メタバースでは、物理的実体と仮想実体の間の距離を克服することができる。
現実的なデータ収集と物理世界からの融合による大規模交通・運転シミュレーションは困難かつコストがかかる。
生成AIを利用して、無制限の条件付きトラフィックを合成し、シミュレーションでデータを駆動する自律運転アーキテクチャを提案する。
論文 参考訳(メタデータ) (2023-02-16T16:54:10Z) - Digital Twin Applications in Urban Logistics: An Overview [4.084365114504618]
デジタルツイン(Digital twins、DT)は、現実の物理システムの仮想レプリカである。
本稿では,DTを都市物流ネットワークに容易に適用可能なフレームワークを提供する。
論文 参考訳(メタデータ) (2023-02-01T14:48:01Z) - The Interplay of AI and Digital Twin: Bridging the Gap between
Data-Driven and Model-Driven Approaches [2.842794675894731]
Digital Twin(DT)の概念は、物理エンティティとネットワークダイナミクスのための仮想ツインを作成することを目的としている。
AIがDTのシードであるという一般的な理解にもかかわらず、DTとAIが互いに有効になることを期待しています。
論文 参考訳(メタデータ) (2022-09-26T05:12:58Z) - IoT-based Route Recommendation for an Intelligent Waste Management
System [61.04795047897888]
本研究は, 空間制約を考慮したIoT対応廃棄物管理システムにおいて, 経路推薦のためのインテリジェントなアプローチを提案する。
我々のソリューションは、ビンの状態と座標を考慮に入れた複数レベルの意思決定プロセスに基づいている。
論文 参考訳(メタデータ) (2022-01-01T12:36:22Z) - An Experimental Urban Case Study with Various Data Sources and a Model
for Traffic Estimation [65.28133251370055]
我々はスイスのチューリッヒの都市ネットワーク内の地域でビデオ計測による実験キャンペーンを組織した。
我々は,既存のサーマルカメラからの測定を確実にすることで,交通の流れや走行時間の観点からの交通状況の把握に注力する。
本稿では,様々なデータソースの融合による移動時間を推定するために,単純かつ効率的な多重線形回帰(MLR)モデルを提案する。
論文 参考訳(メタデータ) (2021-08-02T08:13:57Z) - AI in Smart Cities: Challenges and approaches to enable road vehicle
automation and smart traffic control [56.73750387509709]
SCCは、活動やユーティリティの自動化と最適化による効率向上を目指すデータ中心の社会を構想しています。
本稿では、SCCにおけるAIの視点を説明し、道路車両の自動化とスマート交通制御を可能にする交通で使用されるAIベースの技術の概要を示す。
論文 参考訳(メタデータ) (2021-04-07T14:31:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。