論文の概要: The Brain Tumor Segmentation (BraTS) Challenge 2023: Focus on Pediatrics
(CBTN-CONNECT-DIPGR-ASNR-MICCAI BraTS-PEDs)
- arxiv url: http://arxiv.org/abs/2305.17033v2
- Date: Fri, 7 Jul 2023 20:59:43 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-11 18:26:46.392628
- Title: The Brain Tumor Segmentation (BraTS) Challenge 2023: Focus on Pediatrics
(CBTN-CONNECT-DIPGR-ASNR-MICCAI BraTS-PEDs)
- Title(参考訳): 脳腫瘍分離(BraTS)チャレンジ2023:小児(CBTN-CONNECT-DIPGR-ASNR-MICCAI BraTS-PEDs)に焦点を当てて
- Authors: Anahita Fathi Kazerooni, Nastaran Khalili, Xinyang Liu, Debanjan
Haldar, Zhifan Jiang, Syed Muhammed Anwar, Jake Albrecht, Maruf Adewole,
Udunna Anazodo, Hannah Anderson, Sina Bagheri, Ujjwal Baid, Timothy
Bergquist, Austin J. Borja, Evan Calabrese, Verena Chung, Gian-Marco Conte,
Farouk Dako, James Eddy, Ivan Ezhov, Ariana Familiar, Keyvan Farahani,
Shuvanjan Haldar, Juan Eugenio Iglesias, Anastasia Janas, Elaine Johansen,
Blaise V Jones, Florian Kofler, Dominic LaBella, Hollie Anne Lai, Koen Van
Leemput, Hongwei Bran Li, Nazanin Maleki, Aaron S McAllister, Zeke Meier,
Bjoern Menze, Ahmed W Moawad, Khanak K Nandolia, Julija Pavaine, Marie
Piraud, Tina Poussaint, Sanjay P Prabhu, Zachary Reitman, Andres Rodriguez,
Jeffrey D Rudie, Ibraheem Salman Shaikh, Lubdha M. Shah, Nakul Sheth, Russel
Taki Shinohara, Wenxin Tu, Karthik Viswanathan, Chunhao Wang, Jeffrey B Ware,
Benedikt Wiestler, Walter Wiggins, Anna Zapaishchykova, Mariam Aboian, Miriam
Bornhorst, Peter de Blank, Michelle Deutsch, Maryam Fouladi, Lindsey Hoffman,
Benjamin Kann, Margot Lazow, Leonie Mikael, Ali Nabavizadeh, Roger Packer,
Adam Resnick, Brian Rood, Arastoo Vossough, Spyridon Bakas, Marius George
Linguraru
- Abstract要約: 中枢神経系の小児腫瘍は、小児におけるがん関連死の最も一般的な原因である。
小児の高次グリオーマの生存率は20%未満である。
BraTS-PEDs 2023チャレンジは、小児脳グリオーマのためのボリュームセグメンテーションアルゴリズムの開発に焦点を当てている。
- 参考スコア(独自算出の注目度): 2.752374018386208
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Pediatric tumors of the central nervous system are the most common cause of
cancer-related death in children. The five-year survival rate for high-grade
gliomas in children is less than 20\%. Due to their rarity, the diagnosis of
these entities is often delayed, their treatment is mainly based on historic
treatment concepts, and clinical trials require multi-institutional
collaborations. The MICCAI Brain Tumor Segmentation (BraTS) Challenge is a
landmark community benchmark event with a successful history of 12 years of
resource creation for the segmentation and analysis of adult glioma. Here we
present the CBTN-CONNECT-DIPGR-ASNR-MICCAI BraTS-PEDs 2023 challenge, which
represents the first BraTS challenge focused on pediatric brain tumors with
data acquired across multiple international consortia dedicated to pediatric
neuro-oncology and clinical trials. The BraTS-PEDs 2023 challenge focuses on
benchmarking the development of volumentric segmentation algorithms for
pediatric brain glioma through standardized quantitative performance evaluation
metrics utilized across the BraTS 2023 cluster of challenges. Models gaining
knowledge from the BraTS-PEDs multi-parametric structural MRI (mpMRI) training
data will be evaluated on separate validation and unseen test mpMRI dataof
high-grade pediatric glioma. The CBTN-CONNECT-DIPGR-ASNR-MICCAI BraTS-PEDs 2023
challenge brings together clinicians and AI/imaging scientists to lead to
faster development of automated segmentation techniques that could benefit
clinical trials, and ultimately the care of children with brain tumors.
- Abstract(参考訳): 小児の中枢神経系腫瘍は、小児のがん関連死の最も一般的な原因である。
小児の高次グリオーマに対する5年間の生存率は20\%未満である。
希少性のため、診断が遅れることが多く、治療は主に歴史的治療の概念に基づいており、臨床試験には複数施設の協力が必要である。
MICCAI Brain tumor Segmentation (BraTS) Challengeは、成人グリオーマのセグメンテーションと分析のための12年間の歴史を持つ、目覚ましいコミュニティベンチマークイベントである。
本稿では,小児の脳腫瘍に対する最初のbratsチャレンジであるcbtn-connect-dipgr-asnr-miccai brats-peds 2023 challengeについて述べる。
brats-peds 2023 チャレンジは、brats 2023 クラスタ全体で使用される標準化された定量的性能評価指標を用いて、小児脳グリオーマの体積分節化アルゴリズムの開発をベンチマークすることに焦点を当てている。
BraTS-PEDsマルチパラメトリック構造MRI(mpMRI)トレーニングデータから知識を得たモデルは、高次小児グリオーマの別個の検証と未確認検査mpMRIデータに基づいて評価される。
CBTN-CONNECT-DIPGR-ASNR-MICCAI BraTS-PEDs 2023チャレンジは、臨床治験に役立つ自動セグメンテーション技術の開発と、最終的には脳腫瘍の子どものケアにつながる。
関連論文リスト
- BraTS-PEDs: Results of the Multi-Consortium International Pediatric Brain Tumor Segmentation Challenge 2023 [44.64458075448]
小児脳腫瘍に焦点を当てた第1回BraTS-PEDs 2023チャレンジの結果を報告する。
BraTS-PEDs 2023は、磁気共鳴画像による小児脳グリオーマの体積分割アルゴリズムの評価を目的とした。
小児腫瘍分析におけるトップパフォーマンスのAIアプローチには、nnU-NetとSwin UNETR、Auto3DSeg、あるいはnnU-Netの自己組織化フレームワークによるアンサンブルが含まれていた。
論文 参考訳(メタデータ) (2024-07-11T20:35:32Z) - The 2024 Brain Tumor Segmentation (BraTS) Challenge: Glioma Segmentation on Post-treatment MRI [5.725734864357991]
治療後のグリオーマMRIに対する2024 Brain tumor (BraTS)チャレンジは、最先端の自動セグメンテーションモデルのコミュニティ標準とベンチマークを提供する。
競合他社は、4つの異なる腫瘍サブリージョンを予測するために、自動セグメンテーションモデルを開発する。
モデルは別個の検証とテストデータセットで評価される。
論文 参考訳(メタデータ) (2024-05-28T17:07:55Z) - Analysis of the BraTS 2023 Intracranial Meningioma Segmentation Challenge [44.586530244472655]
我々はBraTS 2023の頭蓋内髄膜腫チャレンジの設計と結果について述べる。
BraTS髄膜腫チャレンジ(BraTS Meningioma Challenge)は、髄膜腫に焦点を当てた以前のBraTSグリオーマチャレンジとは異なる。
上層部は腫瘍,腫瘍コア,腫瘍全体の拡張のために0.976,0.976,0.964の病変中央値類似係数(DSC)を有していた。
論文 参考訳(メタデータ) (2024-05-16T03:23:57Z) - The Brain Tumor Segmentation in Pediatrics (BraTS-PEDs) Challenge: Focus on Pediatrics (CBTN-CONNECT-DIPGR-ASNR-MICCAI BraTS-PEDs) [4.023596068202542]
CBTN--DIPGR-ASNR-MICCAI BraTS-PEDs : 小児脳腫瘍を中心に
小児の高次グリオーマの生存率は20%未満である。
論文 参考訳(メタデータ) (2024-04-23T13:15:22Z) - The ASNR-MICCAI Brain Tumor Segmentation (BraTS) Challenge 2023:
Intracranial Meningioma [4.435336201147607]
BraTS Meningioma 2023 チャレンジは、最先端の自動頭蓋内髄膜腫セグメンテーションモデルのためのコミュニティ標準とベンチマークを提供する。
競合相手はMRIで3つの異なる髄膜下領域を予測する自動セグメンテーションモデルを開発する。
論文 参考訳(メタデータ) (2023-05-12T17:52:36Z) - Cross-Modality Deep Feature Learning for Brain Tumor Segmentation [158.8192041981564]
本稿では, マルチモーダルMRIデータから脳腫瘍を抽出するクロスモーダルディープ・フィーチャーラーニング・フレームワークを提案する。
中心となる考え方は、不十分なデータスケールを補うために、マルチモダリティデータにまたがる豊富なパターンをマイニングすることだ。
on the BraTS benchmarks, this proposed cross-modality deep feature learning framework could effective improve the brain tumor segmentation performance。
論文 参考訳(メタデータ) (2022-01-07T07:46:01Z) - Lung-Originated Tumor Segmentation from Computed Tomography Scan (LOTUS)
Benchmark [48.30502612686276]
肺癌は最も致命的ながんの1つであり、その効果的な診断と治療は腫瘍の正確な悪性度に依存している。
現在最も一般的なアプローチであるHuman-centered segmentationは、サーバ間変動の対象となる。
2018年のVIPカップは、42か国から競争データにアクセスするための世界的な参加から始まった。
簡単に言えば、競争中に提案されたアルゴリズムはすべて、偽陽性還元手法と組み合わせたディープラーニングモデルに基づいている。
論文 参考訳(メタデータ) (2022-01-03T03:06:38Z) - Ensemble CNN Networks for GBM Tumors Segmentation using Multi-parametric
MRI [0.0]
本稿では,術前の mpMRI におけるグリオーマの自動認識のための,DeepSeg と nnU-Net という2つのディープラーニングフレームワークのアグリゲーションを提案する。
本手法では, 腫瘍, 腫瘍コア, 全腫瘍領域のDice類似度スコアが92.00, 87.33, 84.10, Hausdorff Distances 3.81, 8.91, 16.02を得た。
論文 参考訳(メタデータ) (2021-12-13T10:51:20Z) - H2NF-Net for Brain Tumor Segmentation using Multimodal MR Imaging: 2nd
Place Solution to BraTS Challenge 2020 Segmentation Task [96.49879910148854]
当社のH2NF-Netは、単一およびカスケードのHNF-Netを使用して、異なる脳腫瘍サブリージョンを分割します。
我々は、マルチモーダル脳腫瘍チャレンジ(BraTS)2020データセットでモデルをトレーニングし、評価した。
提案手法は,80名近い参加者のうち,brats 2020チャレンジセグメンテーションタスクで2位となった。
論文 参考訳(メタデータ) (2020-12-30T20:44:55Z) - A Global Benchmark of Algorithms for Segmenting Late Gadolinium-Enhanced
Cardiac Magnetic Resonance Imaging [90.29017019187282]
現在世界最大の心臓LGE-MRIデータセットである154個の3D LGE-MRIを用いた「2018 left Atrium Challenge」。
技術および生物学的指標を用いた提案アルゴリズムの解析を行った。
その結果, 最上部法は93.2%, 平均表面は0.7mmであった。
論文 参考訳(メタデータ) (2020-04-26T08:49:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。