論文の概要: Choosing the Right Weights: Balancing Value, Strategy, and Noise in
Recommender Systems
- arxiv url: http://arxiv.org/abs/2305.17428v1
- Date: Sat, 27 May 2023 09:37:58 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-30 19:25:17.132657
- Title: Choosing the Right Weights: Balancing Value, Strategy, and Noise in
Recommender Systems
- Title(参考訳): 適切な重みの選択:レコメンダシステムにおける価値、戦略、ノイズのバランス
- Authors: Smitha Milli, Emma Pierson, Nikhil Garg
- Abstract要約: ユーザとコンテンツプロデューサの両方の観点から、最適なウェイト選択を解析する。
ユーザにとって、より価値に富んだ、ノイズの少ない振る舞いの重み付けは、より有用性をもたらす。
生産者にとって、より価値に富み、戦略を損なう行動の重み付けは、より高い福祉をもたらす。
- 参考スコア(独自算出の注目度): 8.87757125554734
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Many recommender systems are based on optimizing a linear weighting of
different user behaviors, such as clicks, likes, shares, etc. Though the choice
of weights can have a significant impact, there is little formal study or
guidance on how to choose them. We analyze the optimal choice of weights from
the perspectives of both users and content producers who strategically respond
to the weights. We consider three aspects of user behavior: value-faithfulness
(how well a behavior indicates whether the user values the content),
strategy-robustness (how hard it is for producers to manipulate the behavior),
and noisiness (how much estimation error there is in predicting the behavior).
Our theoretical results show that for users, upweighting more value-faithful
and less noisy behaviors leads to higher utility, while for producers,
upweighting more value-faithful and strategy-robust behaviors leads to higher
welfare (and the impact of noise is non-monotonic). Finally, we discuss how our
results can help system designers select weights in practice.
- Abstract(参考訳): 多くのレコメンダシステムは、クリック、いいね!、シェアなど、異なるユーザーの行動の線形重み付けを最適化することに基づいている。
重量の選択は大きな影響を与える可能性があるが、その選択方法に関する正式な研究やガイダンスはほとんどない。
重みの最適選択は、重みに戦略的に反応するユーザーとコンテンツ制作者の両方の観点から分析する。
我々は,ユーザの行動の3つの側面について考察する。すなわち,価値満足性(ユーザがコンテンツの価値を評価できるかを示す行動の程度),戦略ロバスト性(プロデューサが振る舞いを操作するのがいかに難しいか),無意味性(行動を予測する上での推測誤差がどの程度あるか)である。
提案手法では, 提案手法では, 消費者にとって, 付加価値や騒音の少ない行動は, 高い実用性をもたらすが, 生産者においては, 付加価値や戦略ロバスト行動の増大は, 高い福祉(騒音の影響は単調ではない)をもたらす。
最後に、システム設計者が実際に重みを選択できる方法について議論する。
関連論文リスト
- Quantifying User Coherence: A Unified Framework for Cross-Domain Recommendation Analysis [69.37718774071793]
本稿では,レコメンデーションシステムを理解するための新しい情報理論手法を提案する。
9つのデータセットで7つのレコメンデーションアルゴリズムを評価し、測定値と標準的なパフォーマンス指標の関係を明らかにする。
論文 参考訳(メタデータ) (2024-10-03T13:02:07Z) - Measuring Strategization in Recommendation: Users Adapt Their Behavior to Shape Future Content [66.71102704873185]
実験と調査を行うことで,ユーザストラテジゼーションの試行を行う。
参加者の居住時間や「いいね!」の使用など,結果指標間での戦略化の強い証拠を見出す。
この結果から,プラットフォームはアルゴリズムがユーザの行動に与える影響を無視できないことが示唆された。
論文 参考訳(メタデータ) (2024-05-09T07:36:08Z) - User Welfare Optimization in Recommender Systems with Competing Content Creators [65.25721571688369]
本研究では,コンテンツ制作者間での競争ゲーム環境下で,システム側ユーザ福祉の最適化を行う。
本稿では,推奨コンテンツの満足度に基づいて,各ユーザの重みの列を動的に計算する,プラットフォームのためのアルゴリズムソリューションを提案する。
これらの重みはレコメンデーションポリシーやポストレコメンデーション報酬を調整するメカニズムの設計に利用され、それによってクリエイターのコンテンツ制作戦略に影響を与える。
論文 参考訳(メタデータ) (2024-04-28T21:09:52Z) - Recommending to Strategic Users [10.079698681921673]
ユーザーは、将来推奨されるコンテンツの種類に影響を与えるために、戦略的にコンテンツを選択する。
本稿では,戦略的消費を考慮した推奨品質向上のための3つの介入を提案する。
論文 参考訳(メタデータ) (2023-02-13T17:57:30Z) - Eliciting User Preferences for Personalized Multi-Objective Decision
Making through Comparative Feedback [76.7007545844273]
目的に対して異なるユーザの好みに対応する多目的意思決定フレームワークを提案する。
我々のモデルは、ベクトル値の報酬関数を持つマルコフ決定プロセスで構成され、各ユーザが未知の選好ベクトルを持つ。
少数の比較クエリを用いて,ユーザに対してほぼ最適なポリシを求めるアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-02-07T23:58:19Z) - Recommendation with User Active Disclosing Willingness [20.306413327597603]
本研究では,ユーザが異なる行動を公開する上で,その「意志」を示すことを許される,新しい推薦パラダイムについて検討する。
我々は,推薦品質とユーザ開示意欲のバランスをとる上で,モデルの有効性を示すため,広範囲な実験を行った。
論文 参考訳(メタデータ) (2022-10-25T04:43:40Z) - Efficient Bi-Level Optimization for Recommendation Denoising [31.968068788022403]
暗黙のフィードバックは高いノイズを持ち、推奨品質を著しく損なう。
両レベルの最適化問題としてデノナイズをモデル化する。
内部最適化は、推奨のための効果的なモデルと重量決定を導くことを目的としている。
重み発生器を用いて重みの保存と1ステップの勾配マッチングに基づく損失を回避し、計算時間を著しく短縮する。
論文 参考訳(メタデータ) (2022-10-19T06:36:21Z) - Recommendation Systems with Distribution-Free Reliability Guarantees [83.80644194980042]
我々は、主に良いアイテムを含むことを厳格に保証されたアイテムのセットを返す方法を示す。
本手法は, 擬似発見率の厳密な有限サンプル制御によるランキングモデルを提供する。
我々はYahoo!のランキングとMSMarcoデータセットの学習方法を評価する。
論文 参考訳(メタデータ) (2022-07-04T17:49:25Z) - Meta-Wrapper: Differentiable Wrapping Operator for User Interest
Selection in CTR Prediction [97.99938802797377]
クリックスルー率(CTR)予測は、ユーザーが商品をクリックする確率を予測することを目的としており、リコメンデーションシステムにおいてますます重要になっている。
近年,ユーザの行動からユーザの興味を自動的に抽出する深層学習モデルが大きな成功を収めている。
そこで我々は,メタラッパー(Meta-Wrapper)と呼ばれるラッパー手法の枠組みに基づく新しい手法を提案する。
論文 参考訳(メタデータ) (2022-06-28T03:28:15Z) - Estimating and Penalizing Induced Preference Shifts in Recommender
Systems [10.052697877248601]
システムデザイナは、レコメンデータが引き起こすシフトを見積もること、そのようなシフトが望まないかどうかを評価すること、さらには問題のあるシフトを避けるために積極的に最適化すること、などを議論する。
我々は、過去のユーザインタラクションデータを使用して、その好みのダイナミクスを暗黙的に含む予測的ユーザモデルをトレーニングする。
シミュレーション実験では、学習した嗜好動態モデルがユーザの嗜好を推定し、新しいレコメンデーションに対してどのように反応するかを示す。
論文 参考訳(メタデータ) (2022-04-25T21:04:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。