論文の概要: Safety of autonomous vehicles: A survey on Model-based vs. AI-based
approaches
- arxiv url: http://arxiv.org/abs/2305.17941v1
- Date: Mon, 29 May 2023 08:05:32 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-30 15:49:49.843388
- Title: Safety of autonomous vehicles: A survey on Model-based vs. AI-based
approaches
- Title(参考訳): 自動運転車の安全性:モデルベース対AIベースのアプローチに関する調査
- Authors: Dimia Iberraken and Lounis Adouane
- Abstract要約: AVの全体制御アーキテクチャを定義するための関連手法と概念について検討する。
このレビュープロセスを通じて、モデルベースの方法とAIベースのアプローチのいずれかを使用する研究を強調することを意図している。
本稿では,安全性検証技術と安全フレームワークの標準化・一般化という,AVの安全性を保証するための手法について論じる。
- 参考スコア(独自算出の注目度): 1.370633147306388
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The growing advancements in Autonomous Vehicles (AVs) have emphasized the
critical need to prioritize the absolute safety of AV maneuvers, especially in
dynamic and unpredictable environments or situations. This objective becomes
even more challenging due to the uniqueness of every traffic
situation/condition. To cope with all these very constrained and complex
configurations, AVs must have appropriate control architectures with reliable
and real-time Risk Assessment and Management Strategies (RAMS). These targeted
RAMS must lead to reduce drastically the navigation risks. However, the lack of
safety guarantees proves, which is one of the key challenges to be addressed,
limit drastically the ambition to introduce more broadly AVs on our roads and
restrict the use of AVs to very limited use cases. Therefore, the focus and the
ambition of this paper is to survey research on autonomous vehicles while
focusing on the important topic of safety guarantee of AVs. For this purpose,
it is proposed to review research on relevant methods and concepts defining an
overall control architecture for AVs, with an emphasis on the safety assessment
and decision-making systems composing these architectures. Moreover, it is
intended through this reviewing process to highlight researches that use either
model-based methods or AI-based approaches. This is performed while emphasizing
the strengths and weaknesses of each methodology and investigating the research
that proposes a comprehensive multi-modal design that combines model-based and
AI approaches. This paper ends with discussions on the methods used to
guarantee the safety of AVs namely: safety verification techniques and the
standardization/generalization of safety frameworks.
- Abstract(参考訳): 自動運転車(AV)の進歩は、特に動的で予測不可能な環境や状況において、AV操縦の絶対的な安全性を優先する重要な必要性を強調している。
この目的は、あらゆる交通状況/条件のユニークさによってさらに困難になる。
非常に制約のある複雑な構成に対処するには、AVは信頼性とリアルタイムのリスクアセスメント・マネジメント戦略(RAMS)を備えた適切な制御アーキテクチャが必要である。
これらのターゲットRAMは、ナビゲーションのリスクを大幅に減らす必要がある。
しかし、安全保証の欠如は、対処すべき重要な課題の1つであり、我々の道路により広範なavを導入する野望を極端に制限し、avsの使用を非常に限られたユースケースに制限する。
そこで本論文は,自動車の安全保証の重要課題に着目しつつ,自動運転車に関する研究に焦点をあてるものである。
本研究の目的は,これらのアーキテクチャを構成する安全評価と意思決定システムを中心に,AVの全体制御アーキテクチャを定義する手法と概念について検討することである。
さらに、このレビュープロセスを通じて、モデルベースの手法またはAIベースのアプローチを使用する研究を強調することを意図している。
これは、各方法論の長所と短所を強調し、モデルベースとAIアプローチを組み合わせた包括的なマルチモーダル設計を提案する研究を調査しながら実施される。
本稿では,安全検証技術と安全フレームワークの標準化・一般化というavsの安全性を保証する手法に関する議論を終える。
関連論文リスト
- Cross-Modality Safety Alignment [73.8765529028288]
我々は、モダリティ間の安全アライメントを評価するために、セーフインプットとアンセーフアウトプット(SIUO)と呼ばれる新しい安全アライメントの課題を導入する。
この問題を実証的に調査するため,我々はSIUOを作成した。SIUOは,自己修復,違法行為,プライバシー侵害など,9つの重要な安全領域を含むクロスモダリティベンチマークである。
以上の結果から, クローズドおよびオープンソース両方のLVLMの安全性上の重大な脆弱性が明らかとなり, 複雑で現実的なシナリオを確実に解釈し, 応答する上で, 現行モデルが不十分であることが示唆された。
論文 参考訳(メタデータ) (2024-06-21T16:14:15Z) - Towards Guaranteed Safe AI: A Framework for Ensuring Robust and Reliable AI Systems [88.80306881112313]
我々は、AI安全性に対する一連のアプローチを紹介し、定義する。
これらのアプローチの中核的な特徴は、高保証の定量的安全性保証を備えたAIシステムを作ることである。
これら3つのコアコンポーネントをそれぞれ作成するためのアプローチを概説し、主な技術的課題を説明し、それらに対する潜在的なソリューションをいくつか提案します。
論文 参考訳(メタデータ) (2024-05-10T17:38:32Z) - Inherent Diverse Redundant Safety Mechanisms for AI-based Software
Elements in Automotive Applications [1.6495054381576084]
本稿では,自律走行システムにおける人工知能(AI)アルゴリズムの役割と課題について考察する。
主な関心事は、AIモデルの初期のトレーニングデータを超えて一般化する能力(と必要性)に関連している。
本稿では、自律運転のような安全クリティカルなアプリケーションにおける過信AIモデルに関連するリスクについて検討する。
論文 参考訳(メタデータ) (2024-02-13T04:15:26Z) - Formal Modelling of Safety Architecture for Responsibility-Aware
Autonomous Vehicle via Event-B Refinement [1.45566585318013]
本稿では,AVの安全条件をモデル化し,導出し,証明する上での戦略と経験について述べる。
このケーススタディは、現在最先端のゴール認識型責任感性安全性モデルを対象として、周囲の車両との相互作用について議論する。
論文 参考訳(メタデータ) (2024-01-10T02:02:06Z) - The Art of Defending: A Systematic Evaluation and Analysis of LLM
Defense Strategies on Safety and Over-Defensiveness [56.174255970895466]
大規模言語モデル(LLM)は、自然言語処理アプリケーションにおいて、ますます重要な役割を担っている。
本稿では,SODE(Safety and Over-Defensiveness Evaluation)ベンチマークを提案する。
論文 参考訳(メタデータ) (2023-12-30T17:37:06Z) - A Counterfactual Safety Margin Perspective on the Scoring of Autonomous
Vehicles' Riskiness [52.27309191283943]
本稿では,異なるAVの行動のリスクを評価するためのデータ駆動型フレームワークを提案する。
本稿では,衝突を引き起こす可能性のある名目行動から最小限の偏差を示す,対実的安全マージンの概念を提案する。
論文 参考訳(メタデータ) (2023-08-02T09:48:08Z) - Towards Safer Generative Language Models: A Survey on Safety Risks,
Evaluations, and Improvements [76.80453043969209]
本調査では,大規模モデルに関する安全研究の枠組みについて述べる。
まず、広範囲にわたる安全問題を導入し、その後、大型モデルの安全性評価手法を掘り下げる。
トレーニングからデプロイメントまで,大規模なモデルの安全性を高めるための戦略について検討する。
論文 参考訳(メタデータ) (2023-02-18T09:32:55Z) - Evaluating Model-free Reinforcement Learning toward Safety-critical
Tasks [70.76757529955577]
本稿では、国家安全RLの観点から、この領域における先行研究を再考する。
安全最適化と安全予測を組み合わせた共同手法であるUnrolling Safety Layer (USL)を提案する。
この領域のさらなる研究を容易にするため、我々は関連するアルゴリズムを統一パイプラインで再現し、SafeRL-Kitに組み込む。
論文 参考訳(メタデータ) (2022-12-12T06:30:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。