論文の概要: Formal Modelling of Safety Architecture for Responsibility-Aware
Autonomous Vehicle via Event-B Refinement
- arxiv url: http://arxiv.org/abs/2401.04875v1
- Date: Wed, 10 Jan 2024 02:02:06 GMT
- ステータス: 処理完了
- システム内更新日: 2024-01-11 15:41:13.176337
- Title: Formal Modelling of Safety Architecture for Responsibility-Aware
Autonomous Vehicle via Event-B Refinement
- Title(参考訳): イベントbリファインメントによる責任認識型自動運転車の安全アーキテクチャの形式的モデリング
- Authors: Tsutomu Kobayashi, Martin Bondu, Fuyuki Ishikawa
- Abstract要約: 本稿では,AVの安全条件をモデル化し,導出し,証明する上での戦略と経験について述べる。
このケーススタディは、現在最先端のゴール認識型責任感性安全性モデルを対象として、周囲の車両との相互作用について議論する。
- 参考スコア(独自算出の注目度): 1.45566585318013
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Ensuring the safety of autonomous vehicles (AVs) is the key requisite for
their acceptance in society. This complexity is the core challenge in formally
proving their safety conditions with AI-based black-box controllers and
surrounding objects under various traffic scenarios. This paper describes our
strategy and experience in modelling, deriving, and proving the safety
conditions of AVs with the Event-B refinement mechanism to reduce complexity.
Our case study targets the state-of-the-art model of goal-aware
responsibility-sensitive safety to argue over interactions with surrounding
vehicles. We also employ the Simplex architecture to involve advanced black-box
AI controllers. Our experience has demonstrated that the refinement mechanism
can be effectively used to gradually develop the complex system over scenario
variations.
- Abstract(参考訳): 自動運転車(AV)の安全性を確保することが、社会への受容の鍵となる。
この複雑さは、AIベースのブラックボックスコントローラや周囲のオブジェクトをさまざまなトラフィックシナリオ下で、安全条件を正式に証明する上で、重要な課題である。
本稿では,複雑度を低減するためにEvent-Bリファインメント機構を用いてAVの安全性条件をモデル化・導出・証明するための戦略と経験について述べる。
このケーススタディは、現在最先端のゴール認識型責任感性安全モデルを対象として、周囲の車両との相互作用について議論する。
また、高度なブラックボックスAIコントローラを含むSimplexアーキテクチャも使用しています。
我々の経験から、改良機構はシナリオのバリエーションよりも複雑なシステムを徐々に発展させるのに有効であることが示された。
関連論文リスト
- SafeEmbodAI: a Safety Framework for Mobile Robots in Embodied AI Systems [5.055705635181593]
物理的世界と自律的に対話するAIロボットを含む、身体化されたAIシステムは、かなり進歩している。
不適切な安全管理は、複雑な環境で障害を引き起こし、悪意のあるコマンドインジェクションに対してシステムが脆弱になる。
我々は,移動ロボットを組込みAIシステムに統合するための安全フレームワークであるtextitSafeEmbodAIを提案する。
論文 参考訳(メタデータ) (2024-09-03T05:56:50Z) - Cross-Modality Safety Alignment [73.8765529028288]
我々は、モダリティ間の安全アライメントを評価するために、セーフインプットとアンセーフアウトプット(SIUO)と呼ばれる新しい安全アライメントの課題を導入する。
この問題を実証的に調査するため,我々はSIUOを作成した。SIUOは,自己修復,違法行為,プライバシー侵害など,9つの重要な安全領域を含むクロスモダリティベンチマークである。
以上の結果から, クローズドおよびオープンソース両方のLVLMの安全性上の重大な脆弱性が明らかとなり, 複雑で現実的なシナリオを確実に解釈し, 応答する上で, 現行モデルが不十分であることが示唆された。
論文 参考訳(メタデータ) (2024-06-21T16:14:15Z) - SAFE-SIM: Safety-Critical Closed-Loop Traffic Simulation with Diffusion-Controllable Adversaries [94.84458417662407]
制御可能なクローズドループ安全クリティカルシミュレーションフレームワークであるSAFE-SIMを紹介する。
提案手法は,1)現実の環境を深く反映した現実的な長距離安全クリティカルシナリオの生成,2)より包括的でインタラクティブな評価のための制御可能な敵行動の提供,の2つの利点をもたらす。
複数のプランナにまたがるnuScenesとnuPlanデータセットを使用して、我々のフレームワークを実証的に検証し、リアリズムと制御性の両方の改善を実証した。
論文 参考訳(メタデータ) (2023-12-31T04:14:43Z) - Empowering Autonomous Driving with Large Language Models: A Safety Perspective [82.90376711290808]
本稿では,Large Language Models (LLM) の自律運転システムへの統合について検討する。
LLMは行動計画におけるインテリジェントな意思決定者であり、文脈的安全学習のための安全検証シールドを備えている。
適応型LLM条件モデル予測制御(MPC)と状態機械を用いたLLM対応対話型行動計画スキームという,シミュレーション環境における2つの重要な研究について述べる。
論文 参考訳(メタデータ) (2023-11-28T03:13:09Z) - When Authentication Is Not Enough: On the Security of Behavioral-Based Driver Authentication Systems [53.2306792009435]
我々はランダムフォレストとリカレントニューラルネットワークアーキテクチャに基づく2つの軽量ドライバ認証システムを開発した。
我々は,SMARTCANとGANCANという2つの新しいエスケープアタックを開発することで,これらのシステムに対する攻撃を最初に提案する。
コントリビューションを通じて、これらのシステムを安全に採用する実践者を支援し、車の盗難を軽減し、ドライバーのセキュリティを高める。
論文 参考訳(メタデータ) (2023-06-09T14:33:26Z) - Safety of autonomous vehicles: A survey on Model-based vs. AI-based
approaches [1.370633147306388]
AVの全体制御アーキテクチャを定義するための関連手法と概念について検討する。
このレビュープロセスを通じて、モデルベースの方法とAIベースのアプローチのいずれかを使用する研究を強調することを意図している。
本稿では,安全性検証技術と安全フレームワークの標準化・一般化という,AVの安全性を保証するための手法について論じる。
論文 参考訳(メタデータ) (2023-05-29T08:05:32Z) - Evaluating Model-free Reinforcement Learning toward Safety-critical
Tasks [70.76757529955577]
本稿では、国家安全RLの観点から、この領域における先行研究を再考する。
安全最適化と安全予測を組み合わせた共同手法であるUnrolling Safety Layer (USL)を提案する。
この領域のさらなる研究を容易にするため、我々は関連するアルゴリズムを統一パイプラインで再現し、SafeRL-Kitに組み込む。
論文 参考訳(メタデータ) (2022-12-12T06:30:17Z) - Synergistic Redundancy: Towards Verifiable Safety for Autonomous
Vehicles [10.277825331268179]
我々は、自律走行車(AV)のような複雑なサイバー物理システムのための安全アーキテクチャとして、シナジスティック冗長性(SR)を提案する。
SRは、システムのミッションと安全タスクを分離することで、特定の障害に対する検証可能な安全保証を提供する。
ミッション層との密接な調整により、システム内の安全クリティカルな障害を容易かつ早期に検出することができる。
論文 参考訳(メタデータ) (2022-09-04T23:52:03Z) - An Empirical Analysis of the Use of Real-Time Reachability for the
Safety Assurance of Autonomous Vehicles [7.1169864450668845]
本稿では,1/10スケールのオープンソース自動運転車プラットフォームの安全性を確保するために,シンプルなアーキテクチャの実装にリアルタイムリーチビリティアルゴリズムを提案する。
提案手法では,システムの将来状態に対するコントローラの判断の影響に着目して,基盤となるコントローラを解析する必要性を抽象化する。
論文 参考訳(メタデータ) (2022-05-03T11:12:29Z) - Differentiable Control Barrier Functions for Vision-based End-to-End
Autonomous Driving [100.57791628642624]
本稿では,視覚に基づくエンドツーエンド自動運転のための安全保証学習フレームワークを提案する。
我々は、勾配降下によりエンドツーエンドに訓練された微分制御バリア関数(dCBF)を備えた学習システムを設計する。
論文 参考訳(メタデータ) (2022-03-04T16:14:33Z) - Towards Safe, Explainable, and Regulated Autonomous Driving [11.043966021881426]
本稿では、自律制御、説明可能なAI(XAI)、規制コンプライアンスを統合するフレームワークを提案する。
フレームワークの目標を達成するのに役立つ、関連するXAIアプローチについて説明します。
論文 参考訳(メタデータ) (2021-11-20T05:06:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。