Infrared Image Deturbulence Restoration Using Degradation Parameter-Assisted Wide & Deep Learning
- URL: http://arxiv.org/abs/2305.18708v2
- Date: Tue, 06 May 2025 08:34:42 GMT
- Title: Infrared Image Deturbulence Restoration Using Degradation Parameter-Assisted Wide & Deep Learning
- Authors: Yi Lu, Yadong Wang, Xingbo Jiang, Xiangzhi Bai,
- Abstract summary: We propose DparNet, a parameter-assisted multi-frame network with a wide & deep architecture.<n>DparNet learns a degradation prior directly from degraded images without external knowledge.<n>It significantly outperforms State-of-the-Art (SOTA) methods in restoration performance and efficiency.
- Score: 12.305318121246277
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Infrared images captured under turbulent conditions are degraded by complex geometric distortions and blur. We address infrared deturbulence as an image restoration task, proposing DparNet, a parameter-assisted multi-frame network with a wide & deep architecture. DparNet learns a degradation prior (key parameter matrix) directly from degraded images without external knowledge. Its wide & deep architecture uses these learned parameters to directly modulate restoration, achieving spatially and intensity adaptive results. Evaluated on dedicated infrared deturbulence (49,744 images) and visible image denoising (109,536 images) datasets, DparNet significantly outperforms State-of-the-Art (SOTA) methods in restoration performance and efficiency. Notably, leveraging these parameters improves PSNR by 0.6-1.1 dB with less than 2% increase in model parameters and computational complexity. Our work demonstrates that degraded images hide key degradation information that can be learned and utilized to boost adaptive image restoration.
Related papers
- A Tree-guided CNN for image super-resolution [50.30242741813306]
We design a tree-guided CNN for image super-resolution (TSRNet)<n>It uses a tree architecture to guide a deep network to enhance effect of key nodes to amplify the relation of hierarchical information.<n>To prevent insufficiency of the obtained structural information, cosine transform techniques in the TSRNet are used to improve performance of image super-resolution.
arXiv Detail & Related papers (2025-06-03T08:05:11Z) - Decouple to Reconstruct: High Quality UHD Restoration via Active Feature Disentanglement and Reversible Fusion [77.08942160610478]
Ultra-high-definition (UHD) image restoration often faces computational bottlenecks and information loss due to its extremely high resolution.
We propose a Controlled Differential Disentangled VAE that discards easily recoverable background information while encoding more difficult-to-recover degraded information into latent space.
Our method effectively alleviates the information loss problem in VAE models while ensuring computational efficiency, significantly improving the quality of UHD image restoration, and achieves state-of-the-art results in six UHD restoration tasks with only 1M parameters.
arXiv Detail & Related papers (2025-03-17T02:55:18Z) - DEAL: Data-Efficient Adversarial Learning for High-Quality Infrared Imaging [47.22313650077835]
We introduce thermal degradation simulation integrated into the training process via a mini-max optimization.<n>The simulation is dynamic to maximize objective functions, thus capturing a broad spectrum of degraded data distributions.<n>This approach enables training with limited data, thereby improving model performance.
arXiv Detail & Related papers (2025-03-02T14:15:44Z) - A Progressive Image Restoration Network for High-order Degradation Imaging in Remote Sensing [5.6223397629993626]
We propose a novel progressive restoration network for high-order degradation imaging (HDI-PRNet)
Our method achieves superior performance on both synthetic and real remote sensing images.
arXiv Detail & Related papers (2024-12-10T05:08:39Z) - Multi-Scale Representation Learning for Image Restoration with State-Space Model [13.622411683295686]
We propose a novel Multi-Scale State-Space Model-based (MS-Mamba) for efficient image restoration.
Our proposed method achieves new state-of-the-art performance while maintaining low computational complexity.
arXiv Detail & Related papers (2024-08-19T16:42:58Z) - Diff-Restorer: Unleashing Visual Prompts for Diffusion-based Universal Image Restoration [19.87693298262894]
We propose Diff-Restorer, a universal image restoration method based on the diffusion model.
We utilize the pre-trained visual language model to extract visual prompts from degraded images.
We also design a Degradation-aware Decoder to perform structural correction and convert the latent code to the pixel domain.
arXiv Detail & Related papers (2024-07-04T05:01:10Z) - LIR: A Lightweight Baseline for Image Restoration [4.187190284830909]
The inherent characteristics of the Image Restoration task are often overlooked in many works.
We propose a Lightweight Baseline network for Image Restoration called LIR to efficiently restore the image and remove degradations.
Our LIR achieves the state-of-the-art Structure Similarity Index Measure (SSIM) and comparable performance to state-of-the-art models on Peak Signal-to-Noise Ratio (PSNR)
arXiv Detail & Related papers (2024-02-02T12:39:47Z) - DGNet: Dynamic Gradient-Guided Network for Water-Related Optics Image
Enhancement [77.0360085530701]
Underwater image enhancement (UIE) is a challenging task due to the complex degradation caused by underwater environments.
Previous methods often idealize the degradation process, and neglect the impact of medium noise and object motion on the distribution of image features.
Our approach utilizes predicted images to dynamically update pseudo-labels, adding a dynamic gradient to optimize the network's gradient space.
arXiv Detail & Related papers (2023-12-12T06:07:21Z) - Enhancing Low-light Light Field Images with A Deep Compensation Unfolding Network [52.77569396659629]
This paper presents the deep compensation network unfolding (DCUNet) for restoring light field (LF) images captured under low-light conditions.
The framework uses the intermediate enhanced result to estimate the illumination map, which is then employed in the unfolding process to produce a new enhanced result.
To properly leverage the unique characteristics of LF images, this paper proposes a pseudo-explicit feature interaction module.
arXiv Detail & Related papers (2023-08-10T07:53:06Z) - All-in-one Multi-degradation Image Restoration Network via Hierarchical
Degradation Representation [47.00239809958627]
We propose a novel All-in-one Multi-degradation Image Restoration Network (AMIRNet)
AMIRNet learns a degradation representation for unknown degraded images by progressively constructing a tree structure through clustering.
This tree-structured representation explicitly reflects the consistency and discrepancy of various distortions, providing a specific clue for image restoration.
arXiv Detail & Related papers (2023-08-06T04:51:41Z) - Learning Degradation-Independent Representations for Camera ISP Pipelines [14.195578257521934]
We propose a novel approach to learn degradation-independent representations (DiR) through the refinement of a self-supervised learned baseline representation.
The proposed DiR learning technique has remarkable domain generalization capability and it outperforms state-of-the-art methods across various downstream tasks.
arXiv Detail & Related papers (2023-07-03T05:38:28Z) - Is Deep Image Prior in Need of a Good Education? [57.3399060347311]
Deep image prior was introduced as an effective prior for image reconstruction.
Despite its impressive reconstructive properties, the approach is slow when compared to learned or traditional reconstruction techniques.
We develop a two-stage learning paradigm to address the computational challenge.
arXiv Detail & Related papers (2021-11-23T15:08:26Z) - Spatially-Adaptive Image Restoration using Distortion-Guided Networks [51.89245800461537]
We present a learning-based solution for restoring images suffering from spatially-varying degradations.
We propose SPAIR, a network design that harnesses distortion-localization information and dynamically adjusts to difficult regions in the image.
arXiv Detail & Related papers (2021-08-19T11:02:25Z) - Deep Amended Gradient Descent for Efficient Spectral Reconstruction from
Single RGB Images [42.26124628784883]
We propose a compact, efficient, and end-to-end learning-based framework, namely AGD-Net.
We first formulate the problem explicitly based on the classic gradient descent algorithm.
AGD-Net can improve the reconstruction quality by more than 1.0 dB on average.
arXiv Detail & Related papers (2021-08-12T05:54:09Z) - Underwater Image Restoration via Contrastive Learning and a Real-world
Dataset [59.35766392100753]
We present a novel method for underwater image restoration based on unsupervised image-to-image translation framework.
Our proposed method leveraged contrastive learning and generative adversarial networks to maximize the mutual information between raw and restored images.
arXiv Detail & Related papers (2021-06-20T16:06:26Z) - Learning to Restore a Single Face Image Degraded by Atmospheric
Turbulence using CNNs [93.72048616001064]
Images captured under such condition suffer from a combination of geometric deformation and space varying blur.
We present a deep learning-based solution to the problem of restoring a turbulence-degraded face image.
arXiv Detail & Related papers (2020-07-16T15:25:08Z) - Attention Based Real Image Restoration [48.933507352496726]
Deep convolutional neural networks perform better on images containing synthetic degradations.
This paper proposes a novel single-stage blind real image restoration network (R$2$Net)
arXiv Detail & Related papers (2020-04-26T04:21:49Z) - Structure-Preserving Super Resolution with Gradient Guidance [87.79271975960764]
Structures matter in single image super resolution (SISR)
Recent studies benefiting from generative adversarial network (GAN) have promoted the development of SISR.
However, there are always undesired structural distortions in the recovered images.
arXiv Detail & Related papers (2020-03-29T17:26:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.