Quantum catalysis in cavity quantum electrodynamics
- URL: http://arxiv.org/abs/2305.19324v2
- Date: Tue, 14 May 2024 19:14:33 GMT
- Title: Quantum catalysis in cavity quantum electrodynamics
- Authors: A. de Oliveira Junior, Martà Perarnau-Llobet, Nicolas Brunner, Patryk Lipka-Bartosik,
- Abstract summary: Catalysis plays a key role in many scientific areas, most notably in chemistry and biology.
Here we present a catalytic process in a paradigmatic quantum optics setup, where an atom interacts with an optical cavity.
The atom plays the role of the catalyst, and allows for the deterministic generation of non-classical light in the cavity.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Catalysis plays a key role in many scientific areas, most notably in chemistry and biology. Here we present a catalytic process in a paradigmatic quantum optics setup, namely the Jaynes-Cummings model, where an atom interacts with an optical cavity. The atom plays the role of the catalyst, and allows for the deterministic generation of non-classical light in the cavity. Considering a cavity prepared in a ``classical'' coherent state, and choosing appropriately the atomic state and the interaction time, we obtain an evolution with the following properties. First, the state of the cavity has been modified, and now features non-classicality, as witnessed by sub-Poissonian statistics or Wigner negativity. Second, the process is catalytic, in the sense that the atom is deterministically returned to its initial state exactly, and can be re-used multiple times. What is more, we also show that our findings are robust under dissipation and can be applied to scenarios featuring cavity loss and atomic decay. Finally, we investigate the mechanism of this catalytic process, in particular highlighting the key role of correlations and quantum coherence.
Related papers
- Simulating and comparing the quantum and classical mechanically motion of two hydrogen atoms [0.0]
A modified version of Tavis-Cummings-Hubbard model with two two-level artificial atoms in optical cavities is described.
The motion of these two atoms (nuclei) both quantum and classical mechanically is compared.
arXiv Detail & Related papers (2024-05-30T17:43:57Z) - Hysteresis and Self-Oscillations in an Artificial Memristive Quantum Neuron [79.16635054977068]
We study an artificial neuron circuit containing a quantum memristor in the presence of relaxation and dephasing.
We demonstrate that this physical principle enables hysteretic behavior of the current-voltage characteristics of the quantum device.
arXiv Detail & Related papers (2024-05-01T16:47:23Z) - Geometric and information-theoretic aspects of quantum thermodynamics [0.0]
I investigate what state transformations can quantum systems undergo while interacting with a thermal bath under specific constraints.
The last part of this thesis focuses on studying a ubiquitous phenomenon in science, socalled Wigisson-Cummings effect.
I will demonstrate this effect in a paradigmatic quantum optics setup, where an atom interacts with an optical cavity.
arXiv Detail & Related papers (2024-03-31T09:10:03Z) - Real-time dynamics of false vacuum decay [49.1574468325115]
We investigate false vacuum decay of a relativistic scalar field in the metastable minimum of an asymmetric double-well potential.
We employ the non-perturbative framework of the two-particle irreducible (2PI) quantum effective action at next-to-leading order in a large-N expansion.
arXiv Detail & Related papers (2023-10-06T12:44:48Z) - Catalytic and asymptotic equivalence for quantum entanglement [68.8204255655161]
Many-copy entanglement manipulation procedures allow for highly entangled pure states from noisy states.
We show that using an entangled catalyst cannot enhance the singlet distillation rate of a distillable quantum state.
Our findings provide a comprehensive understanding of the capabilities and limitations of both catalytic and state transformations of entangled states.
arXiv Detail & Related papers (2023-05-05T12:57:59Z) - Universality of critical dynamics with finite entanglement [68.8204255655161]
We study how low-energy dynamics of quantum systems near criticality are modified by finite entanglement.
Our result establishes the precise role played by entanglement in time-dependent critical phenomena.
arXiv Detail & Related papers (2023-01-23T19:23:54Z) - A Quantum-Classical Model of Brain Dynamics [62.997667081978825]
Mixed Weyl symbol is used to describe brain processes at the microscopic level.
Electromagnetic fields and phonon modes involved in the processes are treated either classically or semi-classically.
Zero-point quantum effects can be incorporated into numerical simulations by controlling the temperature of each field mode.
arXiv Detail & Related papers (2023-01-17T15:16:21Z) - Quantum Dynamics of Vibrational Polariton Chemistry [0.0]
We employ an exact quantum mechanical simulation technique to investigate a model of cavity-modified chemical reactions in the condensed phase.
The model contains the coupling of the reaction coordinate to a generic solvent, cavity coupling to either the reaction coordinate or a non-reactive mode, and the coupling of the cavity to lossy modes.
arXiv Detail & Related papers (2022-10-11T15:45:01Z) - Catalysis of entanglement and other quantum resources [39.58317527488534]
Instead of chemical reactions, quantum enhances our ability to convert quantum states into each other under physical constraints.
This article reviews the most recent developments in quantum preservation and gives a historical overview of this research direction.
arXiv Detail & Related papers (2022-07-12T17:15:18Z) - Spin Entanglement and Magnetic Competition via Long-range Interactions
in Spinor Quantum Optical Lattices [62.997667081978825]
We study the effects of cavity mediated long range magnetic interactions and optical lattices in ultracold matter.
We find that global interactions modify the underlying magnetic character of the system while introducing competition scenarios.
These allow new alternatives toward the design of robust mechanisms for quantum information purposes.
arXiv Detail & Related papers (2020-11-16T08:03:44Z) - Preparation of a superposition of squeezed coherent states of a cavity
field via coupling to a superconducting charge qubit [0.0]
We will discuss the issue of the generation of nonclassical states in the context of a superconducting qubit in a microcavity.
The key ingredients to engineer these quantum states are a tunable gate voltage and a classical magnetic field applied to SQUID.
arXiv Detail & Related papers (2020-03-20T18:06:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.