論文の概要: Survey of Trustworthy AI: A Meta Decision of AI
- arxiv url: http://arxiv.org/abs/2306.00380v2
- Date: Mon, 12 Jun 2023 06:04:32 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-13 23:35:30.391904
- Title: Survey of Trustworthy AI: A Meta Decision of AI
- Title(参考訳): 信頼できるaiに関する調査: aiのメタ決定
- Authors: Caesar Wu, Yuan-Fang Lib, and Pascal Bouvry
- Abstract要約: 不透明なシステムを信頼するには、信頼に値するAI(TAI)のレベルを決定する必要がある。
説明可能性/透明性、公平性/多様性、一般化可能性、プライバシ、データガバナンス、安全性/ロバスト性、説明責任、信頼性、持続可能性。
- 参考スコア(独自算出の注目度): 0.41292255339309647
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: When making strategic decisions, we are often confronted with overwhelming
information to process. The situation can be further complicated when some
pieces of evidence are contradicted each other or paradoxical. The challenge
then becomes how to determine which information is useful and which ones should
be eliminated. This process is known as meta-decision. Likewise, when it comes
to using Artificial Intelligence (AI) systems for strategic decision-making,
placing trust in the AI itself becomes a meta-decision, given that many AI
systems are viewed as opaque "black boxes" that process large amounts of data.
Trusting an opaque system involves deciding on the level of Trustworthy AI
(TAI). We propose a new approach to address this issue by introducing a novel
taxonomy or framework of TAI, which encompasses three crucial domains:
articulate, authentic, and basic for different levels of trust. To underpin
these domains, we create ten dimensions to measure trust:
explainability/transparency, fairness/diversity, generalizability, privacy,
data governance, safety/robustness, accountability, reproducibility,
reliability, and sustainability. We aim to use this taxonomy to conduct a
comprehensive survey and explore different TAI approaches from a strategic
decision-making perspective.
- Abstract(参考訳): 戦略的決定を行うとき、私たちはしばしば処理すべき圧倒的な情報に直面します。
この状況は、いくつかの証拠が互いに矛盾している、あるいは矛盾している場合にさらに複雑である。
課題は、どの情報が役に立つか、どの情報を排除すべきかを決定する方法だ。
この過程はメタ決定と呼ばれる。
同様に、戦略的意思決定に人工知能(AI)システムを使用する場合、多くのAIシステムが大量のデータを処理する不透明な「ブラックボックス」と見なされるため、AI自体への信頼がメタ決定となる。
不透明なシステムを信頼するには、信頼に値するAI(TAI)のレベルを決定する必要がある。
本稿では, 異なる信頼レベルに対して, 明瞭性, 信頼性, 基礎という3つの重要な領域を包含するtaiの新たな分類法や枠組みを導入することにより, この問題に新たなアプローチを提案する。
説明可能性/透明性、公平性/多様性、一般化可能性、プライバシ、データガバナンス、安全性/ロバスト性、説明可能性、再現性、信頼性、持続可能性。
我々は,この分類学を用いて包括的調査を行い,戦略的意思決定の観点から異なるTAIアプローチを探求することを目指している。
関連論文リスト
- Combining AI Control Systems and Human Decision Support via Robustness and Criticality [53.10194953873209]
我々は、逆説(AE)の方法論を最先端の強化学習フレームワークに拡張する。
学習したAI制御システムは、敵のタンパリングに対する堅牢性を示す。
トレーニング/学習フレームワークでは、この技術は人間のインタラクションを通じてAIの決定と説明の両方を改善することができる。
論文 参考訳(メタデータ) (2024-07-03T15:38:57Z) - Towards Guaranteed Safe AI: A Framework for Ensuring Robust and Reliable AI Systems [88.80306881112313]
我々は、AI安全性に対する一連のアプローチを紹介し、定義する。
これらのアプローチの中核的な特徴は、高保証の定量的安全性保証を備えたAIシステムを作ることである。
これら3つのコアコンポーネントをそれぞれ作成するためのアプローチを概説し、主な技術的課題を説明し、それらに対する潜在的なソリューションをいくつか提案します。
論文 参考訳(メタデータ) (2024-05-10T17:38:32Z) - Trustworthy AI: Deciding What to Decide [41.10597843436572]
我々は,AIの重要なコンポーネントを含む,信頼に値するAI(TAI)の新しいフレームワークを提案する。
我々は,この枠組みを用いて,定量的および定性的な研究手法によるTAI実験を実施することを目指している。
技術分野における信用デフォルトスワップ(CDS)の戦略的投資決定を適用するための最適予測モデルを定式化する。
論文 参考訳(メタデータ) (2023-11-21T13:43:58Z) - Trust, Accountability, and Autonomy in Knowledge Graph-based AI for
Self-determination [1.4305544869388402]
知識グラフ(KG)は、インテリジェントな意思決定を支えるための基盤として登場した。
KGと神経学習の統合は、現在活発な研究のトピックである。
本稿では,KGベースのAIによる自己決定を支援するための基礎的なトピックと研究の柱を概念化する。
論文 参考訳(メタデータ) (2023-10-30T12:51:52Z) - Never trust, always verify : a roadmap for Trustworthy AI? [12.031113181911627]
我々はAIベースのシステムのコンテキストにおける信頼を検証し、AIシステムが信頼に値するものとなることの意味を理解する。
我々は、AIに対する信頼(resp. zero-trust)モデルを提案し、AIシステムの信頼性を保証するために満足すべき特性のセットを提案する。
論文 参考訳(メタデータ) (2022-06-23T21:13:10Z) - Cybertrust: From Explainable to Actionable and Interpretable AI (AI2) [58.981120701284816]
Actionable and Interpretable AI (AI2)は、AIレコメンデーションにユーザの信頼度を明確に定量化し視覚化する。
これにより、AIシステムの予測を調べてテストすることで、システムの意思決定に対する信頼の基盤を確立することができる。
論文 参考訳(メタデータ) (2022-01-26T18:53:09Z) - Knowledge-intensive Language Understanding for Explainable AI [9.541228711585886]
AIが主導する意思決定の仕方と、どの決定要因が含まれているかを理解することが不可欠である。
意思決定に直接関係する人間中心の説明を持つことは重要である。
人間が理解し、使用する明示的なドメイン知識を巻き込む必要がある。
論文 参考訳(メタデータ) (2021-08-02T21:12:30Z) - Trustworthy AI [75.99046162669997]
入力データの小さな敵対的変化への脆さ、決定の説明能力、トレーニングデータのバイアスに対処する能力は、最も顕著な制限である。
我々は,AIシステムに対するユーザおよび公的な信頼を高める上での6つの重要な問題に対処するために,信頼に値するAIに関するチュートリアルを提案する。
論文 参考訳(メタデータ) (2020-11-02T20:04:18Z) - Formalizing Trust in Artificial Intelligence: Prerequisites, Causes and
Goals of Human Trust in AI [55.4046755826066]
我々は、社会学の対人信頼(すなわち、人間の信頼)に着想を得た信頼のモデルについて議論する。
ユーザとAIの間の信頼は、暗黙的あるいは明示的な契約が保持する信頼である。
我々は、信頼できるAIの設計方法、信頼が浮かび上がったかどうか、保証されているかどうかを評価する方法について論じる。
論文 参考訳(メタデータ) (2020-10-15T03:07:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。