論文の概要: Predicting Temporal Aspects of Movement for Predictive Replication in
Fog Environments
- arxiv url: http://arxiv.org/abs/2306.00575v4
- Date: Mon, 19 Feb 2024 09:46:27 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-21 06:47:05.713478
- Title: Predicting Temporal Aspects of Movement for Predictive Replication in
Fog Environments
- Title(参考訳): 霧環境における予測複製のための運動の時間的側面の予測
- Authors: Emil Balitzki and Tobias Pfandzelter and David Bermbach
- Abstract要約: ブラインドまたはリアクティブデータは、フォグコンピューティングのポテンシャルを利用するには不十分である。
時間的予測のためのHolt-Winterの指数平滑化を用いた新しいモデルを提案する。
実際のユーザトラジェクトリによるフォグネットワークシミュレーションでは,データ利用率を1%に抑えながら,余剰データの15%削減を実現している。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: To fully exploit the benefits of the fog environment, efficient management of
data locality is crucial. Blind or reactive data replication falls short in
harnessing the potential of fog computing, necessitating more advanced
techniques for predicting where and when clients will connect. While spatial
prediction has received considerable attention, temporal prediction remains
understudied.
Our paper addresses this gap by examining the advantages of incorporating
temporal prediction into existing spatial prediction models. We also provide a
comprehensive analysis of spatio-temporal prediction models, such as Deep
Neural Networks and Markov models, in the context of predictive replication. We
propose a novel model using Holt-Winter's Exponential Smoothing for temporal
prediction, leveraging sequential and periodical user movement patterns. In a
fog network simulation with real user trajectories our model achieves a 15%
reduction in excess data with a marginal 1% decrease in data availability.
- Abstract(参考訳): フォグ環境の利点を十分に活用するには,データローカリティの効率的な管理が不可欠である。
ブラインドあるいはリアクティブなデータレプリケーションは、フォグコンピューティングの可能性を生かし、クライアントが接続する場所とタイミングを予測するためのより高度なテクニックを必要とする。
空間的予測はかなり注目されているが、時間的予測は未定である。
本稿では,既存の空間予測モデルに時間的予測を組み込むことの利点を検討することで,このギャップに対処する。
また,予測レプリケーションの文脈において,ディープニューラルネットワークやマルコフモデルといった時空間予測モデルの包括的解析を行う。
本稿では,逐次および周期的ユーザ移動パターンを活用した時間予測のためのholt-winterの指数的平滑化を用いた新しいモデルを提案する。
実際のユーザトラジェクトリによるフォグネットワークシミュレーションでは,データ利用率を1%に抑えながら,過剰データの15%削減を実現している。
関連論文リスト
- A Unified Replay-based Continuous Learning Framework for Spatio-Temporal Prediction on Streaming Data [26.570986572374085]
本稿では,ストリーミングデータの予測を可能にするために,リプレイベースの継続的学習フレームワークを提案する。
このフレームワークは、過去の知識を保存するために時間混合機構を使用してデータと融合した、以前に学習されたサンプルの再生バッファを含む。
論文 参考訳(メタデータ) (2024-04-23T13:02:11Z) - ExtremeCast: Boosting Extreme Value Prediction for Global Weather Forecast [57.6987191099507]
非対称な最適化を行い、極端な天気予報を得るために極端な値を強調する新しい損失関数であるExlossを導入する。
また,複数のランダムサンプルを用いて予測結果の不確かさをキャプチャするExBoosterについても紹介する。
提案手法は,上位中距離予測モデルに匹敵する全体的な予測精度を維持しつつ,極端気象予測における最先端性能を達成することができる。
論文 参考訳(メタデータ) (2024-02-02T10:34:13Z) - Spatio-Temporal Attention Graph Neural Network for Remaining Useful Life
Prediction [1.831835396047386]
本研究では,時空間注意グラフニューラルネットワークを提案する。
本モデルでは,空間的・時間的特徴抽出のために,グラフニューラルネットワークと時間的畳み込みニューラルネットワークを組み合わせる。
C-MAPSSデータセットを用いて、クラスタリング正規化とクラスタリング正規化の影響を評価するための総合的な実験を行った。
論文 参考訳(メタデータ) (2024-01-29T08:49:53Z) - Learning Robust Precipitation Forecaster by Temporal Frame Interpolation [65.5045412005064]
本研究では,空間的不一致に対するレジリエンスを示す頑健な降水予測モデルを構築した。
提案手法は,textit4cast'23コンペティションの移行学習リーダーボードにおいて,textit1位を確保したモデルにおいて,予測精度が大幅に向上した。
論文 参考訳(メタデータ) (2023-11-30T08:22:08Z) - Performative Time-Series Forecasting [71.18553214204978]
我々は,機械学習の観点から,パフォーマンス時系列予測(PeTS)を定式化する。
本稿では,予測分布シフトに対する遅延応答の概念を活用する新しい手法であるFeature Performative-Shifting(FPS)を提案する。
新型コロナウイルスの複数の時系列モデルと交通予報タスクを用いた総合的な実験を行った。
論文 参考訳(メタデータ) (2023-10-09T18:34:29Z) - Precipitation nowcasting with generative diffusion models [0.0]
降水処理における拡散モデルの有効性について検討した。
本研究は, 確立されたU-Netモデルの性能と比較したものである。
論文 参考訳(メタデータ) (2023-08-13T09:51:16Z) - Uncovering the Missing Pattern: Unified Framework Towards Trajectory
Imputation and Prediction [60.60223171143206]
軌道予測は、観測されたシーケンスから実体運動や人間の行動を理解する上で重要な作業である。
現在の方法では、観測されたシーケンスが完了したと仮定し、欠落した値の可能性を無視する。
本稿では,グラフに基づく条件変動リカレントニューラルネットワーク (GC-VRNN) の統一フレームワークを提案する。
論文 参考訳(メタデータ) (2023-03-28T14:27:27Z) - Multi-axis Attentive Prediction for Sparse EventData: An Application to
Crime Prediction [16.654369376687296]
本稿では,2つの観測角度による事象伝播の短期的ダイナミクスと長期的意味論の両方を抽出するための,純粋に注意的なアプローチを提案する。
提案したコントラスト学習目的は,MAPSEDのセマンティクスとイベントのダイナミックスを捉える能力を大幅に向上させる。
論文 参考訳(メタデータ) (2021-10-05T02:38:46Z) - Back2Future: Leveraging Backfill Dynamics for Improving Real-time
Predictions in Future [73.03458424369657]
公衆衛生におけるリアルタイム予測では、データ収集は簡単で要求の多いタスクである。
過去の文献では「バックフィル」現象とそのモデル性能への影響についてはほとんど研究されていない。
我々は、与えられたモデルの予測をリアルタイムで洗練することを目的とした、新しい問題とニューラルネットワークフレームワークBack2Futureを定式化する。
論文 参考訳(メタデータ) (2021-06-08T14:48:20Z) - Learning Interpretable Deep State Space Model for Probabilistic Time
Series Forecasting [98.57851612518758]
確率的時系列予測は、その歴史に基づいて将来の分布を推定する。
本稿では,非線形エミッションモデルと遷移モデルとをネットワークによってパラメータ化した,確率的時系列予測のための深部状態空間モデルを提案する。
実験では,我々のモデルが正確かつ鋭い確率予測を生成することを示す。
論文 参考訳(メタデータ) (2021-01-31T06:49:33Z) - SmaAt-UNet: Precipitation Nowcasting using a Small Attention-UNet
Architecture [5.28539620288341]
データ駆動型ニューラルネットワークのアプローチにより,正確な降水量を推定できることが示唆された。
オランダ地域の降水マップとフランスのクラウドカバレッジのバイナリ画像を用いて、実際のデータセットに対する我々のアプローチを評価した。
論文 参考訳(メタデータ) (2020-07-08T20:33:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。