論文の概要: Classical-to-Quantum Transfer Learning Facilitates Machine Learning with Variational Quantum Circuit
- arxiv url: http://arxiv.org/abs/2306.03741v2
- Date: Sun, 2 Jun 2024 01:55:08 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-04 21:29:55.894414
- Title: Classical-to-Quantum Transfer Learning Facilitates Machine Learning with Variational Quantum Circuit
- Title(参考訳): 古典-量子移動学習は変分量子回路を用いた機械学習をファシリテートする
- Authors: Jun Qi, Chao-Han Huck Yang, Pin-Yu Chen, Min-Hsiu Hsieh, Hector Zenil, Jesper Tegner,
- Abstract要約: 本稿では,変分量子回路(VQC)を用いた古典的量子移動学習アーキテクチャにより,VQCモデルの表現と一般化(推定誤差)が向上することを証明する。
古典-量子遷移学習のアーキテクチャは、事前学習された古典的生成AIモデルを活用し、訓練段階におけるVQCの最適パラメータの発見を容易にする。
- 参考スコア(独自算出の注目度): 62.55763504085508
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: While Quantum Machine Learning (QML) is an exciting emerging area, the accuracy of the loss function still needs to be improved by the number of available qubits. Here, we reformulate the QML problem such that the approximation error (representation power) does not depend on the number of qubits. We prove that a classical-to-quantum transfer learning architecture using a Variational Quantum Circuit (VQC) improves the representation and generalization (estimation error) capabilities of the VQC model. We derive analytical bounds for the approximation and estimation error. We show that the architecture of classical-to-quantum transfer learning leverages pre-trained classical generative AI models, making it easier to find the optimal parameters for the VQC in the training stage. To validate our theoretical analysis, we perform experiments on single-dot and double-dot binary classification tasks for charge stability diagrams in semiconductor quantum dots, where the related empirical results support our theoretical findings. Our analytical and empirical results demonstrate the effectiveness of classical-to-quantum transfer learning architecture in realistic tasks. This sets the stage for accelerating QML applications beyond the current limits of available qubits.
- Abstract(参考訳): 量子機械学習(Quantum Machine Learning, QML)はエキサイティングな新興分野であるが、損失関数の精度は利用可能なキュービットの数によって改善される必要がある。
ここでは、近似誤差(表現力)が量子ビット数に依存しないようなQML問題を再構成する。
本稿では,変分量子回路(VQC)を用いた古典的量子移動学習アーキテクチャにより,VQCモデルの表現と一般化(推定誤差)が向上することを証明する。
近似と推定誤差について解析的境界を導出する。
古典-量子遷移学習のアーキテクチャは、事前学習された古典的生成AIモデルを活用し、訓練段階におけるVQCの最適パラメータの発見を容易にする。
理論解析を検証するため,半導体量子ドットにおける電荷安定図の単一ドットと二重ドットのバイナリ分類タスクについて実験を行った。
解析的および実証的な結果から,現実的なタスクにおける古典-量子移動学習アーキテクチャの有効性が示された。
これにより、利用可能なキュービットの現在の限界を超えて、QMLアプリケーションを高速化するステージが設定される。
関連論文リスト
- Leveraging Pre-Trained Neural Networks to Enhance Machine Learning with Variational Quantum Circuits [48.33631905972908]
我々は、事前学習されたニューラルネットワークを用いて変分量子回路(VQC)を強化する革新的なアプローチを導入する。
この手法は近似誤差をキュービット数から効果的に分離し、制約条件の必要性を除去する。
我々の結果はヒトゲノム解析などの応用にまで拡張され、我々のアプローチの幅広い適用性を示している。
論文 参考訳(メタデータ) (2024-11-13T12:03:39Z) - Quantum-Train: Rethinking Hybrid Quantum-Classical Machine Learning in the Model Compression Perspective [7.7063925534143705]
本稿では,量子コンピューティングと機械学習アルゴリズムを統合する新しいアプローチであるQuantum-Train(QT)フレームワークを紹介する。
QTは、古典的なマッピングモデルと並んで量子ニューラルネットワークを利用することで、顕著な結果を得る。
論文 参考訳(メタデータ) (2024-05-18T14:35:57Z) - A joint optimization approach of parameterized quantum circuits with a
tensor network [0.0]
現在の中間スケール量子(NISQ)デバイスはその能力に制限がある。
本稿では,パラメータ化ネットワーク(TN)を用いて,変分量子固有解法(VQE)アルゴリズムの性能改善を試みる。
論文 参考訳(メタデータ) (2024-02-19T12:53:52Z) - Neural network encoded variational quantum algorithms [0.241710192205034]
ニューラルネットワーク(NN)符号化変分量子アルゴリズム(VQA)という一般的なフレームワークを導入する。
NN-VQAは与えられた問題からニューラルネットワークに入力(ハミルトンのパラメータなど)を供給し、その出力を使用して標準VQAのアンサッツ回路をパラメータ化する。
パラメータ化されたXXZスピンモデルの基底状態を解決するためのNN変分量子固有解器(VQE)について報告する。
論文 参考訳(メタデータ) (2023-08-02T10:32:57Z) - Decomposition of Matrix Product States into Shallow Quantum Circuits [62.5210028594015]
テンソルネットワーク(TN)アルゴリズムは、パラメタライズド量子回路(PQC)にマッピングできる
本稿では,現実的な量子回路を用いてTN状態を近似する新しいプロトコルを提案する。
その結果、量子回路の逐次的な成長と最適化を含む1つの特定のプロトコルが、他の全ての手法より優れていることが明らかとなった。
論文 参考訳(メタデータ) (2022-09-01T17:08:41Z) - Theoretical Error Performance Analysis for Variational Quantum Circuit
Based Functional Regression [83.79664725059877]
本研究では,次元減少と機能回帰のためのエンドツーエンドの量子ニューラルネットワークであるTTN-VQCを提案する。
また,polyak-Lojasiewicz (PL) 条件を利用してTTN-VQCの最適化特性を特徴付ける。
論文 参考訳(メタデータ) (2022-06-08T06:54:07Z) - QTN-VQC: An End-to-End Learning framework for Quantum Neural Networks [71.14713348443465]
可変量子回路(VQC)上に量子埋め込みを行うためのトレーニング可能な量子テンソルネットワーク(QTN)を導入する。
QTNは、量子埋め込みの生成から出力測定まで、エンドツーエンドのパラメトリックモデルパイプライン、すなわちQTN-VQCを可能にする。
MNISTデータセットに対する我々の実験は、他の量子埋め込み手法に対する量子埋め込みに対するQTNの利点を実証している。
論文 参考訳(メタデータ) (2021-10-06T14:44:51Z) - Tensor Network Quantum Virtual Machine for Simulating Quantum Circuits
at Exascale [57.84751206630535]
本稿では,E-scale ACCelerator(XACC)フレームワークにおける量子回路シミュレーションバックエンドとして機能する量子仮想マシン(TNQVM)の近代化版を提案する。
新バージョンは汎用的でスケーラブルなネットワーク処理ライブラリであるExaTNをベースにしており、複数の量子回路シミュレータを提供している。
ポータブルなXACC量子プロセッサとスケーラブルなExaTNバックエンドを組み合わせることで、ラップトップから将来のエクサスケールプラットフォームにスケール可能なエンドツーエンドの仮想開発環境を導入します。
論文 参考訳(メタデータ) (2021-04-21T13:26:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。