論文の概要: In-context Cross-Density Adaptation on Noisy Mammogram Abnormalities
Detection
- arxiv url: http://arxiv.org/abs/2306.06893v1
- Date: Mon, 12 Jun 2023 06:46:42 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-13 15:46:38.444536
- Title: In-context Cross-Density Adaptation on Noisy Mammogram Abnormalities
Detection
- Title(参考訳): 雑音性マンモグラム異常検出におけるコンテキスト内クロスディエンシ適応
- Authors: Huy T. Nguyen, Thinh B. Lam, Quan D.D. Tran, Minh T. Nguyen, Dat T.
Chung, and Vinh Q. Dinh
- Abstract要約: 本稿では,乳房密度分布が深層学習モデルの一般化性能に及ぼす影響をマンモグラフィー画像で検討する。
本稿では,データセット内のソースとターゲット間のドメインギャップを埋める,堅牢な拡張フレームワークを提案する。
- 参考スコア(独自算出の注目度): 0.4433315630787158
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: This paper investigates the impact of breast density distribution on the
generalization performance of deep-learning models on mammography images using
the VinDr-Mammo dataset. We explore the use of domain adaptation techniques,
specifically Domain Adaptive Object Detection (DAOD) with the Noise Latent
Transferability Exploration (NLTE) framework, to improve model performance
across breast densities under noisy labeling circumstances. We propose a robust
augmentation framework to bridge the domain gap between the source and target
inside a dataset. Our results show that DAOD-based methods, along with the
proposed augmentation framework, can improve the generalization performance of
deep-learning models (+5% overall mAP improvement approximately in our
experimental results compared to commonly used detection models). This paper
highlights the importance of domain adaptation techniques in medical imaging,
particularly in the context of breast density distribution, which is critical
in mammography.
- Abstract(参考訳): 本稿では, 乳房密度分布が深層学習モデルの一般化性能に及ぼす影響を, VinDr-Mammoデータセットを用いたマンモグラフィー画像に対して検討する。
本研究では, ノイズ遅延伝達可能性探索(NLTE)フレームワークを用いたドメイン適応型オブジェクト検出(DAOD)を用いて, ノイズラベリング環境下での乳腺密度のモデル性能の向上を図る。
データセット内のソースとターゲット間のドメイン間ギャップを埋めるための堅牢な拡張フレームワークを提案する。
以上の結果から,daodに基づく手法は,提案する拡張フレームワークとともに,ディープラーニングモデルの一般化性能を向上させることができることが分かった。
本稿では,特に乳房密度分布の文脈において,乳房造影において重要な領域適応法の重要性について述べる。
関連論文リスト
- Enhancing AI Diagnostics: Autonomous Lesion Masking via Semi-Supervised Deep Learning [1.4053129774629076]
本研究では,乳房超音波(US)画像における乳房病変の鑑別を目的とした,関心領域(ROI)を自律的に生成することを目的とした,教師なし領域適応手法を提案する。
我々の半教師付き学習アプローチは、真のアノテーションを持つ小さな母乳USデータセットで訓練された原始モデルを利用する。
このモデルはドメイン適応タスクのために反復的に洗練され、当社のプライベートな無注釈乳房データセットに擬似マスクを生成します。
論文 参考訳(メタデータ) (2024-04-18T18:25:00Z) - Adaptive Affinity-Based Generalization For MRI Imaging Segmentation Across Resource-Limited Settings [1.5703963908242198]
本稿では,適応親和性に基づく蒸留とカーネルベースの蒸留をシームレスに組み合わせた,新しい関係に基づく知識フレームワークを提案する。
革新的アプローチを検証するために,我々は公開されている複数ソースのMRIデータについて実験を行った。
論文 参考訳(メタデータ) (2024-04-03T13:35:51Z) - Unsupervised Domain Adaptation for Brain Vessel Segmentation through
Transwarp Contrastive Learning [46.248404274124546]
教師なし領域適応(Unsupervised domain adapt, UDA)は、ラベル付きソース分布とラベル付きターゲット分布との整合を目的とし、ドメイン不変な予測モデルを得る。
本稿では,ラベル付きソースと非ラベル付きターゲット分布の領域間ギャップを狭めるための,UDAのための簡易かつ強力なコントラスト学習フレームワークを提案する。
論文 参考訳(メタデータ) (2024-02-23T10:01:22Z) - Intelligent Breast Cancer Diagnosis with Heuristic-assisted
Trans-Res-U-Net and Multiscale DenseNet using Mammogram Images [0.0]
乳癌(BC)は、女性のがん関連死亡率に大きく寄与する。
悪性の腫瘤を正確に識別することは 依然として困難です
マンモグラフィ画像を用いたBCGスクリーニングのための新しい深層学習手法を提案する。
論文 参考訳(メタデータ) (2023-10-30T10:22:14Z) - ArSDM: Colonoscopy Images Synthesis with Adaptive Refinement Semantic
Diffusion Models [69.9178140563928]
大腸内視鏡検査は臨床診断や治療に不可欠である。
注釈付きデータの不足は、既存の手法の有効性と一般化を制限する。
本稿では, 下流作業に有用な大腸内視鏡画像を生成するために, 適応Refinement Semantic Diffusion Model (ArSDM)を提案する。
論文 参考訳(メタデータ) (2023-09-03T07:55:46Z) - Data Augmentation-Based Unsupervised Domain Adaptation In Medical
Imaging [0.709016563801433]
脳MRI領域分割における堅牢な領域適応のための教師なし手法を提案する。
その結果,提案手法は高い精度を実現し,幅広い適用性を示し,各種タスクにおけるドメインシフトに対する顕著な堅牢性を示した。
論文 参考訳(メタデータ) (2023-08-08T17:00:11Z) - Consistency Regularization for Generalizable Source-free Domain
Adaptation [62.654883736925456]
ソースフリードメイン適応(source-free domain adapt, SFDA)は、ソースデータセットにアクセスすることなく、十分にトレーニングされたソースモデルを未学習のターゲットドメインに適応することを目的としている。
既存のSFDAメソッドは、ターゲットのトレーニングセット上で適用されたモデルを評価し、目に見えないが同一の分散テストセットからデータを無視する。
より一般化可能なSFDA法を開発するための整合正則化フレームワークを提案する。
論文 参考訳(メタデータ) (2023-08-03T07:45:53Z) - The role of noise in denoising models for anomaly detection in medical
images [62.0532151156057]
病理脳病変は脳画像に多彩な外観を示す。
正規データのみを用いた教師なし異常検出手法が提案されている。
空間分解能の最適化と雑音の大きさの最適化により,異なるモデル学習体制の性能が向上することを示す。
論文 参考訳(メタデータ) (2023-01-19T21:39:38Z) - Stacking Ensemble Learning in Deep Domain Adaptation for Ophthalmic
Image Classification [61.656149405657246]
ドメイン適応は、十分なラベルデータを取得することが困難な画像分類タスクに有効である。
本稿では,3つのドメイン適応手法を拡張することで,アンサンブル学習を積み重ねるための新しい手法SELDAを提案する。
Age-Related Eye Disease Study (AREDS)ベンチマーク眼科データセットを用いた実験結果から,提案モデルの有効性が示された。
論文 参考訳(メタデータ) (2022-09-27T14:19:00Z) - Fader Networks for domain adaptation on fMRI: ABIDE-II study [68.5481471934606]
我々は3次元畳み込みオートエンコーダを用いて、無関係な空間画像表現を実現するとともに、ABIDEデータ上で既存のアプローチより優れていることを示す。
論文 参考訳(メタデータ) (2020-10-14T16:50:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。