論文の概要: Mixture of neural fields for heterogeneous reconstruction in cryo-EM
- arxiv url: http://arxiv.org/abs/2412.09420v1
- Date: Thu, 12 Dec 2024 16:26:38 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-13 13:31:38.255435
- Title: Mixture of neural fields for heterogeneous reconstruction in cryo-EM
- Title(参考訳): 低温電界における異種再構成のための神経場の混合
- Authors: Axel Levy, Rishwanth Raghu, David Shustin, Adele Rui-Yang Peng, Huan Li, Oliver Biggs Clarke, Gordon Wetzstein, Ellen D. Zhong,
- Abstract要約: 我々は、コンフォメーションとコンフォメーションの不均一性の両方をモデル化するアプローチであるHydraを提示する。
我々は、新しい可能性に基づく損失関数を用いて、タンパク質の混合物からなる合成データセットに対するアプローチの有効性を実証した。
- 参考スコア(独自算出の注目度): 29.837972881181102
- License:
- Abstract: Cryo-electron microscopy (cryo-EM) is an experimental technique for protein structure determination that images an ensemble of macromolecules in near-physiological contexts. While recent advances enable the reconstruction of dynamic conformations of a single biomolecular complex, current methods do not adequately model samples with mixed conformational and compositional heterogeneity. In particular, datasets containing mixtures of multiple proteins require the joint inference of structure, pose, compositional class, and conformational states for 3D reconstruction. Here, we present Hydra, an approach that models both conformational and compositional heterogeneity fully ab initio by parameterizing structures as arising from one of K neural fields. We employ a new likelihood-based loss function and demonstrate the effectiveness of our approach on synthetic datasets composed of mixtures of proteins with large degrees of conformational variability. We additionally demonstrate Hydra on an experimental dataset of a cellular lysate containing a mixture of different protein complexes. Hydra expands the expressivity of heterogeneous reconstruction methods and thus broadens the scope of cryo-EM to increasingly complex samples.
- Abstract(参考訳): Cryo-Electron Microscopy (Cryo-EM) は、タンパク質の構造決定のための実験技術であり、分子の集合をほぼ生理的文脈で画像化する。
近年の進歩により、単一の生体分子複合体の動的コンフォメーションの再構築が可能となったが、現在の手法ではコンフォメーションと組成の不均一性を混合したサンプルを適切にモデル化することができない。
特に、複数のタンパク質の混合物を含むデータセットは、構造、ポーズ、構成クラス、立体再構成のためのコンフォメーション状態のジョイント推論を必要とする。
ここでは、Kニューラル場から生じる構造をパラメータ化することにより、コンフォメーションとコンフォメーションの不均一性の両方をモデル化するアプローチであるHydraを提案する。
我々は、新しい可能性に基づく損失関数を用いて、コンフォメーションの多様性の大きいタンパク質の混合物からなる合成データセットに対するアプローチの有効性を実証した。
さらに,Hydraを,異なるタンパク質複合体の混合物を含む細胞性リサートの実験データセット上で実証した。
Hydraは異種再構成法の表現力を拡大し、Cryo-EMの範囲をますます複雑なサンプルへと広げる。
関連論文リスト
- Generative modeling of protein ensembles guided by crystallographic electron densities [1.026104527280739]
この問題を解決するために,非I.D.アンサンブル誘導手法を提案する。
特定の単結晶測定で観察された複雑なマルチモーダルなタンパク質のバックボーン構造を正確に復元できることを実証した。
論文 参考訳(メタデータ) (2024-12-17T00:31:59Z) - SFM-Protein: Integrative Co-evolutionary Pre-training for Advanced Protein Sequence Representation [97.99658944212675]
タンパク質基盤モデルのための新しい事前学習戦略を導入する。
アミノ酸残基間の相互作用を強調し、短距離および長距離の共進化的特徴の抽出を強化する。
大規模タンパク質配列データセットを用いて学習し,より優れた一般化能力を示す。
論文 参考訳(メタデータ) (2024-10-31T15:22:03Z) - Structure Language Models for Protein Conformation Generation [66.42864253026053]
伝統的な物理学に基づくシミュレーション手法は、しばしばサンプリング平衡整合に苦しむ。
深い生成モデルは、より効率的な代替としてタンパク質のコンホメーションを生成することを約束している。
本稿では,効率的なタンパク質コンホメーション生成のための新しいフレームワークとして構造言語モデリングを紹介する。
論文 参考訳(メタデータ) (2024-10-24T03:38:51Z) - CryoBench: Diverse and challenging datasets for the heterogeneity problem in cryo-EM [3.424647356090208]
核電子顕微鏡(cryo-EM)は、画像データから高分解能の3次元生体分子構造を決定するための強力な技術である。
ここでは、CryoBenchを紹介します。CryoBenchは、Cleo-EMにおける異種再構成のためのデータセット、メトリクス、ベンチマークのスイートです。
論文 参考訳(メタデータ) (2024-08-10T11:48:14Z) - cryoSPHERE: Single-particle heterogeneous reconstruction from cryo EM [9.887133861477233]
単一粒子低温電子顕微鏡(cryo EM)は、与えられたタンパク質の多数の画像を取得する強力なツールである。
本稿では,タンパク質構造を入力とする深層学習手法であるCryoSPHEREを紹介する。
論文 参考訳(メタデータ) (2024-05-29T15:12:19Z) - CryoChains: Heterogeneous Reconstruction of Molecular Assembly of
Semi-flexible Chains from Cryo-EM Images [3.0828074702828623]
分子鎖の剛体変換により生体分子の大きな変形をコードするCryoChainsを提案する。
ヒトGABAtextsubscriptBおよび熱ショックタンパク質のデータ実験により、CryoChainsは生体分子の不均一な構造を生化学的に定量化できることが示された。
論文 参考訳(メタデータ) (2023-06-12T17:57:12Z) - CryoFormer: Continuous Heterogeneous Cryo-EM Reconstruction using
Transformer-based Neural Representations [49.49939711956354]
核電子顕微鏡(cryo-EM)は、タンパク質やその他の生体分子の3D構造を高分解能で再構築することを可能にする。
3次元構造の連続的な動きをノイズやランダムに配向した2次元Creo-EM画像から再構成することは依然として困難である。
我々はCryoFormerを提案する。CryoFormerは連続したヘテロジニアスCryo-EM再構成のための新しいアプローチである。
論文 参考訳(メタデータ) (2023-03-28T18:59:17Z) - State-specific protein-ligand complex structure prediction with a
multi-scale deep generative model [68.28309982199902]
タンパク質-リガンド複合体構造を直接予測できる計算手法であるNeuralPLexerを提案する。
我々の研究は、データ駆動型アプローチがタンパク質と小分子の構造的協調性を捉え、酵素や薬物分子などの設計を加速させる可能性を示唆している。
論文 参考訳(メタデータ) (2022-09-30T01:46:38Z) - Learning Geometrically Disentangled Representations of Protein Folding
Simulations [72.03095377508856]
この研究は、薬物標的タンパク質の構造的アンサンブルに基づいて生成ニューラルネットワークを学習することに焦点を当てている。
モデル課題は、様々な薬物分子に結合したタンパク質の構造的変動を特徴付けることである。
その結果,我々の幾何学的学習に基づく手法は,複雑な構造変化を生成するための精度と効率の両方を享受できることがわかった。
論文 参考訳(メタデータ) (2022-05-20T19:38:00Z) - Deep learning based mixed-dimensional GMM for characterizing variability
in CryoEM [0.0]
CryoEMは、コンフォメーション状態とコンフォメーション状態の異なる個々のマクロ分子を直接可視化する。
タンパク質や複合体のコンフォメーションランドスケープを決定する機械学習アルゴリズムを提案する。
本手法をいくつかの異なる生体分子系に応用し,様々なスケールで組成変化およびコンフォメーション変化を探索する。
論文 参考訳(メタデータ) (2021-01-25T19:05:23Z) - BERTology Meets Biology: Interpreting Attention in Protein Language
Models [124.8966298974842]
注目レンズを用いたタンパク質トランスフォーマーモデルの解析方法を示す。
注意はタンパク質の折りたたみ構造を捉え、基礎となる配列では遠く離れているが、三次元構造では空間的に近接しているアミノ酸を接続する。
また、注意とタンパク質構造との相互作用を三次元的に可視化する。
論文 参考訳(メタデータ) (2020-06-26T21:50:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。