論文の概要: Employing Crowdsourcing for Enriching a Music Knowledge Base in Higher
Education
- arxiv url: http://arxiv.org/abs/2306.07310v1
- Date: Mon, 12 Jun 2023 17:53:06 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-14 16:16:57.629542
- Title: Employing Crowdsourcing for Enriching a Music Knowledge Base in Higher
Education
- Title(参考訳): 高等教育における音楽知識基盤の充実のためのクラウドソーシング
- Authors: Vassilis Lyberatos, Spyridon Kantarelis, Eirini Kaldeli, Spyros
Bekiaris, Panagiotis Tzortzis, Orfeas Menis - Mastromichalakis and Giorgos
Stamou
- Abstract要約: 学生は、音楽トラックの選択に関連するメタデータを充実させるよう要請された。
98名の学生が参加し,844トラックに関する6400以上の注釈を提出した。
このキャンペーンの結果と、オンライン調査を通じて集められたコメントにより、クラウドソーシングをコンピュータサイエンスカリキュラムに統合する際のメリットと課題について、有益な洞察を得られるようになりました。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper describes the methodology followed and the lessons learned from
employing crowdsourcing techniques as part of a homework assignment involving
higher education students of computer science. Making use of a platform that
supports crowdsourcing in the cultural heritage domain students were solicited
to enrich the metadata associated with a selection of music tracks. The results
of the campaign were further analyzed and exploited by students through the use
of semantic web technologies. In total, 98 students participated in the
campaign, contributing more than 6400 annotations concerning 854 tracks. The
process also led to the creation of an openly available annotated dataset,
which can be useful for machine learning models for music tagging. The
campaign's results and the comments gathered through an online survey enable us
to draw some useful insights about the benefits and challenges of integrating
crowdsourcing into computer science curricula and how this can enhance
students' engagement in the learning process.
- Abstract(参考訳): 本稿では,コンピュータサイエンスの高等教育生を対象とした宿題課題の一環として,クラウドソーシング技術を用いた手法と教訓について述べる。
文化遺産におけるクラウドソーシングを支援するプラットフォームを利用することで、学生は音楽トラックの選択に伴うメタデータを充実させようとした。
このキャンペーンの成果はさらに分析され、学生がセマンティックウェブ技術を用いて活用した。
このキャンペーンには98人の学生が参加し、854トラックに関する6400以上の注釈を提出した。
このプロセスは、また、音楽タグ付けのための機械学習モデルに有用な、公開可能な注釈付きデータセットの作成にも繋がった。
このキャンペーンの結果とオンライン調査を通じて集めたコメントは、コンピュータサイエンスのカリキュラムにクラウドソーシングを統合することのメリットと課題、そしてこれが学習プロセスへの学生の関与をいかに高めるかに関する有益な洞察を導きだすことができる。
関連論文リスト
- Is the Lecture Engaging for Learning? Lecture Voice Sentiment Analysis for Knowledge Graph-Supported Intelligent Lecturing Assistant (ILA) System [0.060227699034124595]
本システムは,音声,コンテンツ,教育のリアルタイム分析を通じて,生徒の学習力を高めるためのインストラクターを支援するように設計されている。
講義音声感情分析のケーススタディとして,3000以上の1分間の講義音声クリップからなるトレーニングセットを開発した。
私たちの究極のゴールは、現代の人工知能技術を活用することで、インストラクターがより積極的に効果的に教えることを支援することです。
論文 参考訳(メタデータ) (2024-08-20T02:22:27Z) - Towards Explainable and Interpretable Musical Difficulty Estimation: A Parameter-efficient Approach [49.2787113554916]
音楽コレクションの整理には曲の難易度を推定することが重要である。
シンボリックな音楽表現の難易度推定には説明可能な記述子を用いる。
ピアノレパートリーで評価したアプローチは,平均2乗誤差(MSE)が1.7。
論文 参考訳(メタデータ) (2024-08-01T11:23:42Z) - Iterative Service-Learning: A Computing-Based Case-study Applied to Small Rural Organizations [0.0]
本稿では,サービス学習の反復的活用による,コンピュータによるアーティファクトの開発,レビュー,改善について述べる。
サービス学習プロジェクトは、しばしば1回限りの取り組みであり、学期のコースで1つの学生チームが完了します。
本研究は,サービス学習によるコンピュータアーティファクトの作成と維持のための革新的な実践を実証する。
論文 参考訳(メタデータ) (2024-06-21T23:05:13Z) - Knowledge Tracing Challenge: Optimal Activity Sequencing for Students [0.9814642627359286]
知識追跡(きゅうがく、英: Knowledge Trace)は、個々の学習者による知識の獲得を評価・追跡する教育において用いられる手法である。
我々は,AAAI2023 Global Knowledge Tracing Challengeの一環として,新たにリリースされたデータセット上に2つの知識追跡アルゴリズムを実装した結果を示す。
論文 参考訳(メタデータ) (2023-11-13T16:28:34Z) - Student Assessment in Cybersecurity Training Automated by Pattern Mining
and Clustering [0.5249805590164902]
本稿では,データマイニングと機械学習技術を用いた18のサイバーセキュリティトレーニングセッションのデータセットについて検討する。
113名の研修生から収集した8834のコマンドを分析し,パターンマイニングとクラスタリングを行った。
以上の結果から,データマイニング手法はサイバーセキュリティトレーニングデータの解析に適していることが示唆された。
論文 参考訳(メタデータ) (2023-07-13T18:52:58Z) - A Video Is Worth 4096 Tokens: Verbalize Videos To Understand Them In
Zero Shot [67.00455874279383]
そこで本研究では,自然言語による記述を生成するために長編動画を音声化し,生成したストーリーの映像理解タスクを実行することを提案する。
提案手法は,ゼロショットであるにもかかわらず,ビデオ理解のための教師付きベースラインよりもはるかに優れた結果が得られる。
ストーリー理解ベンチマークの欠如を緩和するため,我々は,説得戦略の識別に関する計算社会科学における重要な課題に関する最初のデータセットを公開している。
論文 参考訳(メタデータ) (2023-05-16T19:13:11Z) - A Matter of Annotation: An Empirical Study on In Situ and Self-Recall Activity Annotations from Wearable Sensors [56.554277096170246]
In-the-wildデータ収集に焦点をあてたユーザスタディにおいて,一般的な4つのアノテーション手法の評価と対比を行う実験的検討を行った。
実際の記録プロセス中に参加者がアノテートするユーザ主導のin situアノテーションと、各日の終わりに参加者が振り返ってアノテートするリコールメソッドの両方に対して、参加者は自身のアクティビティクラスと対応するラベルを選択できる柔軟性を持っていた。
論文 参考訳(メタデータ) (2023-05-15T16:02:56Z) - Motivating Learners in Multi-Orchestrator Mobile Edge Learning: A
Stackelberg Game Approach [54.28419430315478]
Mobile Edge Learningは、異種エッジデバイス上で機械学習モデルの分散トレーニングを可能にする。
MELでは、十分なトレーニングデータやコンピューティングリソースを入手することなく、トレーニング性能が低下する。
そこで我々は2ラウンドのStackelbergゲームとしてオーケストレータとラーナーの相互作用を定式化するインセンティブ機構を提案する。
論文 参考訳(メタデータ) (2021-09-25T17:27:48Z) - Seminar Learning for Click-Level Weakly Supervised Semantic Segmentation [149.9226057885554]
クリックレベルの監視を伴う意味的セグメンテーションのための新しい学習パラダイムであるセミナー学習を提案する。
セミナー学習の理論的根拠は、異なるネットワークからの知識を活用して、クリックレベルのアノテーションで提供される不十分な情報を補うことである。
実験により,72.51%の新たな最先端性能を実現するセミナー学習の有効性が示された。
論文 参考訳(メタデータ) (2021-08-30T17:27:43Z) - Comparative Study of Learning Outcomes for Online Learning Platforms [47.5164159412965]
パーソナライゼーションとアクティブラーニングは、学習の成功の鍵となる側面です。
私たちは2つの人気のあるオンライン学習プラットフォームの学習結果の比較正面調査を実施します。
論文 参考訳(メタデータ) (2021-04-15T20:40:24Z) - Analyzing Student Strategies In Blended Courses Using Clickstream Data [32.81171098036632]
パターンマイニングと、自然言語処理から借用したモデルを用いて、学生のインタラクションを理解します。
きめ細かいクリックストリームデータは、非商業的な教育支援システムであるDiderotを通じて収集される。
提案手法は,混合コースの低データ設定においても有意な洞察を得られることが示唆された。
論文 参考訳(メタデータ) (2020-05-31T03:01:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。