Thermodynamic bound on quantum state discrimination
- URL: http://arxiv.org/abs/2306.07356v2
- Date: Mon, 22 Jan 2024 15:12:38 GMT
- Title: Thermodynamic bound on quantum state discrimination
- Authors: Jos\'e Polo-G\'omez
- Abstract summary: We show that the second law of thermodynamics poses a restriction on how well we can discriminate between quantum states.
By examining an ideal gas with a quantum internal degree of freedom undergoing a cycle based on a proposal by Asher Peres, we establish a non-trivial upper bound on the attainable accuracy of quantum state discrimination.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We show that the second law of thermodynamics poses a restriction on how well
we can discriminate between quantum states. By examining an ideal gas with a
quantum internal degree of freedom undergoing a cycle based on a proposal by
Asher Peres, we establish a non-trivial upper bound on the attainable accuracy
of quantum state discrimination. This thermodynamic bound, which relies solely
on the linearity of quantum mechanics and the constraint of no work extraction,
matches Holevo's bound on accessible information, but is looser than the
Holevo-Helstrom bound. The result gives more evidence on the disagreement
between thermodynamic entropy and von Neumann entropy, and places potential
limitations on proposals beyond quantum mechanics.
Related papers
- Quantum thermalization of translation-invariant systems at high temperature [0.0]
Quantum thermalization describes how closed quantum systems can effectively reach thermal equilibrium.
Despite its ubiquity and conceptual significance, a complete proof of quantum thermalization has remained elusive for several decades.
We prove that quantum thermalization must occur in any qubit system with local interactions satisfying three conditions.
arXiv Detail & Related papers (2024-09-11T18:00:01Z) - Thermodynamic uncertainty relation for quantum entropy production [0.0]
In quantum thermodynamics, entropy production is usually defined in terms of the quantum relative entropy between two states.
In the absence of coherence between the states, our result reproduces classic TURs in thermodynamics.
arXiv Detail & Related papers (2024-04-28T12:36:35Z) - Quantum Computer-Based Verification of Quantum Thermodynamic Uncertainty Relation [1.6574413179773757]
Quantum thermodynamic uncertainty relations establish the fundamental trade-off between precision and thermodynamic costs.
We present an approach that utilizes a noisy quantum computer for verifying a general quantum thermodynamic uncertainty relation.
This study highlights the potential and limitations of noisy quantum computers for demonstrating quantum thermodynamic trade-offs.
arXiv Detail & Related papers (2024-02-29T15:55:29Z) - Demonstrating Quantum Microscopic Reversibility Using Coherent States of
Light [58.8645797643406]
We propose and experimentally test a quantum generalization of the microscopic reversibility when a quantum system interacts with a heat bath.
We verify that the quantum modification for the principle of microscopic reversibility is critical in the low-temperature limit.
arXiv Detail & Related papers (2022-05-26T00:25:29Z) - Gauge Quantum Thermodynamics of Time-local non-Markovian Evolutions [77.34726150561087]
We deal with a generic time-local non-Markovian master equation.
We define current and power to be process-dependent as in classical thermodynamics.
Applying the theory to quantum thermal engines, we show that gauge transformations can change the machine efficiency.
arXiv Detail & Related papers (2022-04-06T17:59:15Z) - Maximum entropy quantum state distributions [58.720142291102135]
We go beyond traditional thermodynamics and condition on the full distribution of the conserved quantities.
The result are quantum state distributions whose deviations from thermal states' get more pronounced in the limit of wide input distributions.
arXiv Detail & Related papers (2022-03-23T17:42:34Z) - Open-system approach to nonequilibrium quantum thermodynamics at
arbitrary coupling [77.34726150561087]
We develop a general theory describing the thermodynamical behavior of open quantum systems coupled to thermal baths.
Our approach is based on the exact time-local quantum master equation for the reduced open system states.
arXiv Detail & Related papers (2021-09-24T11:19:22Z) - Taking the temperature of a pure quantum state [55.41644538483948]
Temperature is a deceptively simple concept that still raises deep questions at the forefront of quantum physics research.
We propose a scheme to measure the temperature of such pure states through quantum interference.
arXiv Detail & Related papers (2021-03-30T18:18:37Z) - Catalytic Transformations of Pure Entangled States [62.997667081978825]
Entanglement entropy is the von Neumann entropy of quantum entanglement of pure states.
The relation between entanglement entropy and entanglement distillation has been known only for the setting, and the meaning of entanglement entropy in the single-copy regime has so far remained open.
Our results imply that entanglement entropy quantifies the amount of entanglement available in a bipartite pure state to be used for quantum information processing, giving results an operational meaning also in entangled single-copy setup.
arXiv Detail & Related papers (2021-02-22T16:05:01Z) - The First Law of Quantum Field Thermodynamics [0.0]
We show that the most common definitions used in finite-dimensional quantum systems cannot be applied to quantum field theory (QFT)
We propose work distributions that are compatible with QFT and we show that they satisfy the first law of thermodynamics up to second moments.
arXiv Detail & Related papers (2020-08-20T18:16:26Z) - The tight Second Law inequality for coherent quantum systems and
finite-size heat baths [0.0]
We propose a new form of the Second Law inequality that defines a tight bound for extractable work from the non-equilibrium quantum state.
In particular, we derive a formula for the locked energy in coherences, i.e. a quantum contribution that cannot be extracted as a work, and we find out its thermodynamic limit.
arXiv Detail & Related papers (2020-08-12T12:54:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.