Quantum Computer-Based Verification of Quantum Thermodynamic Uncertainty Relation
- URL: http://arxiv.org/abs/2402.19293v2
- Date: Sun, 21 Jul 2024 06:13:52 GMT
- Title: Quantum Computer-Based Verification of Quantum Thermodynamic Uncertainty Relation
- Authors: Nobumasa Ishida, Yoshihiko Hasegawa,
- Abstract summary: Quantum thermodynamic uncertainty relations establish the fundamental trade-off between precision and thermodynamic costs.
We present an approach that utilizes a noisy quantum computer for verifying a general quantum thermodynamic uncertainty relation.
This study highlights the potential and limitations of noisy quantum computers for demonstrating quantum thermodynamic trade-offs.
- Score: 1.6574413179773757
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum thermodynamic uncertainty relations establish the fundamental trade-off between precision and thermodynamic costs, yet their empirical verification is scarce. To extend the range of real-world tests, we present an approach that utilizes a noisy quantum computer for verifying a general quantum thermodynamic uncertainty relation. We employ a three-fold methodology to tackle the limitations of current quantum processors: generalizing a thermodynamic uncertainty relation to arbitrary observables under completely positive trace-preserving maps, proposing a method to measure the thermodynamic cost (survival activity) in the weak coupling regime, and reducing the required circuit depth by exploiting the properties of our thermodynamic uncertainty relation. We apply our bound to a quantum time correlator measurement protocol on IBM's cloud-based quantum processor. The empirical results show that our bound tightly constrains precision, with the relative variance approaching the theoretical limit within a single order of magnitude. Furthermore, our approach enables the saturation of our thermodynamic uncertainty relation by constructing the optimal observable that requires entangled measurements. This study highlights the potential and limitations of noisy quantum computers for demonstrating quantum thermodynamic trade-offs.
Related papers
- Finite-Time Processes In Quantum Thermodynamics: The Limits Of Irreversibility [0.0]
The emergence of irreversibility in physical processes, despite the reversible nature of quantum mechanics, remains an open question in physics.
This thesis explores the intricate relationship between quantum mechanics and thermodynamics.
We tackle the challenge of deriving irreversible thermodynamic behavior from the reversible microscopic framework of quantum mechanics.
arXiv Detail & Related papers (2024-10-24T16:48:24Z) - Quantum thermodynamic uncertainty relation under feedback control [1.9580473532948401]
We explore how quantum feedback, a control technique used to manipulate quantum systems, can enhance the precision.
We find that the presence of feedback control can increase the accuracy of continuous measured systems.
arXiv Detail & Related papers (2023-12-12T16:27:18Z) - Nonequilibrium thermodynamics of quantum coherence beyond linear
response [0.0]
We develop a generic dynamic-Bayesian-network approach to the far-from-equilibrium thermodynamics of coherence.
We obtain criteria for successful coherence-to-work conversion, and identify a nonequilibrium regime where maximum work extraction is increased by quantum coherence.
arXiv Detail & Related papers (2023-01-31T10:24:15Z) - Toward Quantum Computing Phase Diagrams of Gauge Theories with Thermal
Pure Quantum States [0.0]
We propose a generalization of thermal-pure-quantum-state formulation of statistical mechanics applied to constrained gauge-theory dynamics.
We numerically demonstrate that the phase diagram of a simple low-dimensional gauge theory is robustly determined using this approach.
arXiv Detail & Related papers (2022-08-28T01:26:10Z) - Demonstrating Quantum Microscopic Reversibility Using Coherent States of
Light [58.8645797643406]
We propose and experimentally test a quantum generalization of the microscopic reversibility when a quantum system interacts with a heat bath.
We verify that the quantum modification for the principle of microscopic reversibility is critical in the low-temperature limit.
arXiv Detail & Related papers (2022-05-26T00:25:29Z) - Gauge Quantum Thermodynamics of Time-local non-Markovian Evolutions [77.34726150561087]
We deal with a generic time-local non-Markovian master equation.
We define current and power to be process-dependent as in classical thermodynamics.
Applying the theory to quantum thermal engines, we show that gauge transformations can change the machine efficiency.
arXiv Detail & Related papers (2022-04-06T17:59:15Z) - Experimental verification of fluctuation relations with a quantum
computer [68.8204255655161]
We use a quantum processor to experimentally validate a number of theoretical results in non-equilibrium quantum thermodynamics.
Our experiments constitute the experimental basis for the understanding of the non-equilibrium energetics of quantum computation.
arXiv Detail & Related papers (2021-06-08T14:16:12Z) - Taking the temperature of a pure quantum state [55.41644538483948]
Temperature is a deceptively simple concept that still raises deep questions at the forefront of quantum physics research.
We propose a scheme to measure the temperature of such pure states through quantum interference.
arXiv Detail & Related papers (2021-03-30T18:18:37Z) - Coherences and the thermodynamic uncertainty relation: Insights from
quantum absorption refrigerators [6.211723927647019]
We examine the interplay of quantum system coherences and heat current fluctuations on the validity of the thermodynamics uncertainty relation in the quantum regime.
Our results indicate that fluctuations necessitate consideration when assessing the performance of quantum coherent thermal machines.
arXiv Detail & Related papers (2020-11-30T03:15:27Z) - Entropic Uncertainty Relations and the Quantum-to-Classical transition [77.34726150561087]
We aim to shed some light on the quantum-to-classical transition as seen through the analysis of uncertainty relations.
We employ entropic uncertainty relations to show that it is only by the inclusion of imprecision in our model of macroscopic measurements that we can prepare a system with two simultaneously well-defined quantities.
arXiv Detail & Related papers (2020-03-04T14:01:17Z) - Simulation of Thermal Relaxation in Spin Chemistry Systems on a Quantum
Computer Using Inherent Qubit Decoherence [53.20999552522241]
We seek to take advantage of qubit decoherence as a resource in simulating the behavior of real world quantum systems.
We present three methods for implementing the thermal relaxation.
We find excellent agreement between our results, experimental data, and the theoretical prediction.
arXiv Detail & Related papers (2020-01-03T11:48:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.