論文の概要: Amortized Simulation-Based Frequentist Inference for Tractable and
Intractable Likelihoods
- arxiv url: http://arxiv.org/abs/2306.07769v2
- Date: Wed, 1 Nov 2023 20:30:07 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-03 17:18:39.861651
- Title: Amortized Simulation-Based Frequentist Inference for Tractable and
Intractable Likelihoods
- Title(参考訳): Amortized Simulation-based Frequentist Inference for Tractable and Intractable Likelihoods
- Authors: Ali Al Kadhim, Harrison B. Prosper, Olivia F. Prosper
- Abstract要約: シミュレータは、実およびシミュレートされた観測から理論モデルのパラメータを直接推測することを可能にする。
これは後者が難解な場合に特に興味深い。
我々は最近提案された可能性のない頻繁性推論(LF2I)の簡単な拡張を導入する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: High-fidelity simulators that connect theoretical models with observations
are indispensable tools in many sciences. When coupled with machine learning, a
simulator makes it possible to infer the parameters of a theoretical model
directly from real and simulated observations without explicit use of the
likelihood function. This is of particular interest when the latter is
intractable. In this work, we introduce a simple extension of the recently
proposed likelihood-free frequentist inference (LF2I) approach that has some
computational advantages. Like LF2I, this extension yields provably valid
confidence sets in parameter inference problems in which a high-fidelity
simulator is available. The utility of our algorithm is illustrated by applying
it to three pedagogically interesting examples: the first is from cosmology,
the second from high-energy physics and astronomy, both with tractable
likelihoods, while the third, with an intractable likelihood, is from
epidemiology.
- Abstract(参考訳): 理論モデルと観測を結びつける高忠実度シミュレータは多くの科学において不可欠である。
機械学習と組み合わせると、シミュレータは理論モデルのパラメータを直接、確率関数を明示的に使用せずに実とシミュレートされた観測から推測することができる。
これは後者が難解な場合に特に興味深い。
本稿では,最近提案された確率自由頻繁性推論(LF2I)手法の簡単な拡張について述べる。
LF2I と同様に、この拡張は高忠実度シミュレータが利用できるパラメータ推論問題において証明可能な信頼セットを与える。
第一は宇宙論から、第二は高エネルギー物理学と天文学から、両方が扱いやすい可能性を持つ、第三は難解な可能性を持つ、疫学からのものである。
関連論文リスト
- Multifidelity Simulation-based Inference for Computationally Expensive Simulators [5.863359332854155]
我々は,高忠実度シミュレータのパラメータを限られたシミュレーション予算内で推測するために,安価な低忠実度シミュレーションを活用する,神経後部推定のための多忠実度アプローチであるMF-NPEを紹介する。
MF-NPEは、最大2桁の高忠実度シミュレーションを必要としながら、現在の手法に匹敵する性能を示す。
論文 参考訳(メタデータ) (2025-02-12T13:59:22Z) - GauSim: Registering Elastic Objects into Digital World by Gaussian Simulator [55.02281855589641]
GauSimは、ガウスカーネルを通して表現される現実の弾性物体の動的挙動をキャプチャするために設計された、ニューラルネットワークベースの新しいシミュレータである。
我々は連続体力学を活用し、各カーネルを連続体としてモデル化し、理想化された仮定なしに現実的な変形を考慮に入れた。
ガウシムは質量や運動量保存などの明示的な物理制約を取り入れ、解釈可能な結果と堅牢で物理的に妥当なシミュレーションを確実にする。
論文 参考訳(メタデータ) (2024-12-23T18:58:17Z) - Diffusion posterior sampling for simulation-based inference in tall data settings [53.17563688225137]
シミュレーションベース推論(SBI)は、入力パラメータを所定の観測に関連付ける後部分布を近似することができる。
本研究では、モデルのパラメータをより正確に推測するために、複数の観測値が利用できる、背の高いデータ拡張について考察する。
提案手法を,最近提案した各種数値実験の競合手法と比較し,数値安定性と計算コストの観点から,その優位性を実証した。
論文 参考訳(メタデータ) (2024-04-11T09:23:36Z) - Equivariant Graph Neural Operator for Modeling 3D Dynamics [148.98826858078556]
我々は,次のステップの予測ではなく,ダイナミックスを直接トラジェクトリとしてモデル化するために,Equivariant Graph Neural Operator (EGNO)を提案する。
EGNOは3次元力学の時間的進化を明示的に学習し、時間とともに関数として力学を定式化し、それを近似するためにニューラル演算子を学習する。
粒子シミュレーション、人間のモーションキャプチャー、分子動力学を含む複数の領域における総合的な実験は、既存の手法と比較して、EGNOの極めて優れた性能を示す。
論文 参考訳(メタデータ) (2024-01-19T21:50:32Z) - Simulation-based inference using surjective sequential neural likelihood
estimation [50.24983453990065]
主観的逐次的ニューラルネットワーク類似度推定はシミュレーションに基づく推論の新しい手法である。
データを低次元空間に埋め込むことで、SSNLは高次元データセットに適用する際の従来の可能性ベースの手法が抱えるいくつかの問題を解く。
論文 参考訳(メタデータ) (2023-08-02T10:02:38Z) - Nonparametric likelihood-free inference with Jensen-Shannon divergence
for simulator-based models with categorical output [1.4298334143083322]
シミュレータに基づく統計モデルに対する自由な推論は、機械学習と統計のコミュニティの両方において、関心の高まりを招いている。
本稿では、Jensen-Shannon- divergenceの計算特性を用いて、モデルパラメータに対する推定、仮説テスト、信頼区間の構築を可能にする理論的結果のセットを導出する。
このような近似はより集中的なアプローチの素早い代替手段であり、シミュレーターベースモデルの多種多様な応用には魅力的である。
論文 参考訳(メタデータ) (2022-05-22T18:00:13Z) - Robust Bayesian Inference for Simulator-based Models via the MMD
Posterior Bootstrap [13.448658162594604]
後部ブートストラップと最大平均誤差推定器に基づく新しいアルゴリズムを提案する。
これにより、強い性質を持つ高パラレライズ可能なベイズ推論アルゴリズムが導かれる。
このアプローチは、g-and-k分布やトグル・スウィッチモデルなど、さまざまな例に基づいて評価される。
論文 参考訳(メタデータ) (2022-02-09T22:12:19Z) - Likelihood-Free Inference in State-Space Models with Unknown Dynamics [71.94716503075645]
本研究では、状態空間モデルにおいて、観測をシミュレートすることしかできず、遷移ダイナミクスが不明な潜在状態の推測と予測を行う手法を提案する。
本研究では,限られた数のシミュレーションで状態予測と状態予測を行う手法を提案する。
論文 参考訳(メタデータ) (2021-11-02T12:33:42Z) - Arbitrary Marginal Neural Ratio Estimation for Simulation-based
Inference [7.888755225607877]
本稿では,数値積分に頼らずにパラメータの任意の部分集合に対する償却推論を可能にする新しい手法を提案する。
重力波観測による二元ブラックホール系のパラメータ推定法の適用性を示す。
論文 参考訳(メタデータ) (2021-10-01T14:35:46Z) - Simulation-efficient marginal posterior estimation with swyft: stop
wasting your precious time [5.533353383316288]
本研究では,ネスト型ニューラル・サイエンス・ツー・エビデンス比推定とシミュレーションの再利用のためのアルゴリズムを提案する。
これらのアルゴリズムが組み合わさって、縁部および関節後部の自動的および極端にシミュレーターによる効率的な推定を可能にする。
論文 参考訳(メタデータ) (2020-11-27T19:00:07Z) - State preparation and measurement in a quantum simulation of the O(3)
sigma model [65.01359242860215]
我々は,非線型O(3)シグマモデルの固定点が,格子サイトあたり2キュービットしか持たないスピンモデルの量子相転移付近で再現可能であることを示す。
本稿では,弱い結合状態と量子臨界状態の両方において,断熱的基底状態の準備が複雑になる結果を得るためにトロッター法を適用した。
非単位ランダム化シミュレーション法に基づく量子アルゴリズムの提案と解析を行う。
論文 参考訳(メタデータ) (2020-06-28T23:44:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。