Identification of Energy Management Configuration Concepts from a Set of Pareto-optimal Solutions
- URL: http://arxiv.org/abs/2306.08318v2
- Date: Mon, 25 Mar 2024 16:06:34 GMT
- Title: Identification of Energy Management Configuration Concepts from a Set of Pareto-optimal Solutions
- Authors: Felix Lanfermann, Qiqi Liu, Yaochu Jin, Sebastian Schmitt,
- Abstract summary: This study focuses on utilizing the concept identification technique for finding relevant energy management configurations.
We analyze how the choice of description spaces, i.e., the partitioning of the objectives and parameters, impacts the type of information that can be extracted.
- Score: 18.35732614725525
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Implementing resource efficient energy management systems in facilities and buildings becomes increasingly important in the transformation to a sustainable society. However, selecting a suitable configuration based on multiple, typically conflicting objectives, such as cost, robustness with respect to uncertainty of grid operation, or renewable energy utilization, is a difficult multi-criteria decision making problem. The recently developed concept identification technique can facilitate a decision maker by sorting configuration options into semantically meaningful groups (concepts). In this process, the partitioning of the objectives and design parameters into different sets (called description spaces) is a very important step. In this study we focus on utilizing the concept identification technique for finding relevant and viable energy management configurations from a very large data set of Pareto-optimal solutions. The data set consists of 20000 realistic Pareto-optimal building energy management configurations generated by a many-objective evolutionary optimization of a high quality Digital Twin energy management simulator. We analyze how the choice of description spaces, i.e., the partitioning of the objectives and parameters, impacts the type of information that can be extracted. We show that the decision maker can introduce constraints and biases into that process to meet expectations and preferences. The iterative approach presented in this work allows for the generation of valuable insights into trade-offs between specific objectives, and constitutes a powerful and flexible tool to support the decision making process when designing large and complex energy management systems.
Related papers
- Balancing Optimality and Diversity: Human-Centered Decision Making through Generative Curation [6.980546503227467]
We introduce a novel framework called generative curation, which optimize the true desirability of decision options by integrating both quantitative and qualitative aspects.
We propose two implementation approaches: a generative neural network architecture that produces a distribution $pi$ to efficiently sample a diverse set of near-optimal actions, and a sequential optimization method to iteratively generate solutions.
We validate our approach with extensive datasets, demonstrating its effectiveness in enhancing decision-making processes across a range of complex environments.
arXiv Detail & Related papers (2024-09-17T20:13:32Z) - Learning Iterative Reasoning through Energy Diffusion [90.24765095498392]
We introduce iterative reasoning through energy diffusion (IRED), a novel framework for learning to reason for a variety of tasks.
IRED learns energy functions to represent the constraints between input conditions and desired outputs.
We show IRED outperforms existing methods in continuous-space reasoning, discrete-space reasoning, and planning tasks.
arXiv Detail & Related papers (2024-06-17T03:36:47Z) - Interpretable Deep Reinforcement Learning for Optimizing Heterogeneous
Energy Storage Systems [11.03157076666012]
Energy storage systems (ESS) are pivotal component in the energy market, serving as both energy suppliers and consumers.
To enhance ESS flexibility within the energy market, a heterogeneous photovoltaic-ESS (PV-ESS) is proposed.
We develop a comprehensive cost function that takes into account degradation, capital, and operation/maintenance costs to reflect real-world scenarios.
arXiv Detail & Related papers (2023-10-20T02:26:17Z) - Achieving Diversity in Objective Space for Sample-efficient Search of
Multiobjective Optimization Problems [4.732915763557618]
We introduce the Likelihood of Metric Satisfaction (LMS) acquisition function, analyze its behavior and properties, and demonstrate its viability on various problems.
This method presents decision makers with a robust pool of promising design decisions and helps them better understand the space of good solutions.
arXiv Detail & Related papers (2023-06-23T20:42:22Z) - Backpropagation of Unrolled Solvers with Folded Optimization [55.04219793298687]
The integration of constrained optimization models as components in deep networks has led to promising advances on many specialized learning tasks.
One typical strategy is algorithm unrolling, which relies on automatic differentiation through the operations of an iterative solver.
This paper provides theoretical insights into the backward pass of unrolled optimization, leading to a system for generating efficiently solvable analytical models of backpropagation.
arXiv Detail & Related papers (2023-01-28T01:50:42Z) - Design and Planning of Flexible Mobile Micro-Grids Using Deep
Reinforcement Learning [0.0]
The design and planning strategy of a mobile multi-energy supply system for a nomadic community is investigated.
Deep Reinforcement Learning is implemented for the design and planning problem tackled.
The results on a case study for ger communities in Mongolia suggest that mobile nomadic energy systems can be both technically and economically feasible.
arXiv Detail & Related papers (2022-12-08T08:30:50Z) - Multi-Objective Constrained Optimization for Energy Applications via
Tree Ensembles [55.23285485923913]
Energy systems optimization problems are complex due to strongly non-linear system behavior and multiple competing objectives.
In some cases, proposed optimal solutions need to obey explicit input constraints related to physical properties or safety-critical operating conditions.
This paper proposes a novel data-driven strategy using tree ensembles for constrained multi-objective optimization of black-box problems.
arXiv Detail & Related papers (2021-11-04T20:18:55Z) - Energy-Efficient Multi-Orchestrator Mobile Edge Learning [54.28419430315478]
Mobile Edge Learning (MEL) is a collaborative learning paradigm that features distributed training of Machine Learning (ML) models over edge devices.
In MEL, possible coexistence of multiple learning tasks with different datasets may arise.
We propose lightweight algorithms that can achieve near-optimal performance and facilitate the trade-offs between energy consumption, accuracy, and solution complexity.
arXiv Detail & Related papers (2021-09-02T07:37:10Z) - Decision-making Oriented Clustering: Application to Pricing and Power
Consumption Scheduling [61.062312682535755]
We formulate the framework of decision-making oriented clustering and propose an algorithm providing a decision-based partition of the data space and good representative decisions.
By applying this novel framework and algorithm to a typical problem of real-time pricing and that of power consumption scheduling, we obtain several insightful analytical results.
arXiv Detail & Related papers (2021-06-02T08:41:04Z) - The multi-objective optimisation of breakwaters using evolutionary
approach [62.997667081978825]
In engineering practice, it is often necessary to increase the effectiveness of existing protective constructions for ports and coasts.
In the paper, the multi-objective evolutionary approach for the breakwaters optimisation is proposed.
arXiv Detail & Related papers (2020-04-06T21:48:01Z) - A storage expansion planning framework using reinforcement learning and
simulation-based optimization [0.0]
Energy storage is crucial wherever distributed generation is abundant, such as in microgrids.
determining which type of storage technology to invest in, along with the appropriate timing and capacity is a critical research question.
We show that it is possible to derive better engineering solutions that would point to the types of energy storage units which could be at the core of future microgrid applications.
arXiv Detail & Related papers (2020-01-10T15:23:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.