論文の概要: MMD-FUSE: Learning and Combining Kernels for Two-Sample Testing Without
Data Splitting
- arxiv url: http://arxiv.org/abs/2306.08777v1
- Date: Wed, 14 Jun 2023 23:13:03 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-16 17:00:54.408463
- Title: MMD-FUSE: Learning and Combining Kernels for Two-Sample Testing Without
Data Splitting
- Title(参考訳): MMD-FUSE:データ分割のない2サンプルテストのための学習とカーネルの組み合わせ
- Authors: Felix Biggs, Antonin Schrab, Arthur Gretton
- Abstract要約: 最大平均離散性(MMD)に基づく2サンプルテストのパワーを最大化する新しい統計法を提案する。
これらのカーネルは、データ分割を避けるために、よく校正されたテストで、データ依存だが置換に依存しない方法でどのように選択できるかを示す。
我々は,合成低次元および実世界の高次元データに対するMDD-FUSEテストの適用性を強調し,その性能を現状のカーネルテストと比較した。
- 参考スコア(独自算出の注目度): 18.121972277040783
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: We propose novel statistics which maximise the power of a two-sample test
based on the Maximum Mean Discrepancy (MMD), by adapting over the set of
kernels used in defining it. For finite sets, this reduces to combining
(normalised) MMD values under each of these kernels via a weighted soft
maximum. Exponential concentration bounds are proved for our proposed
statistics under the null and alternative. We further show how these kernels
can be chosen in a data-dependent but permutation-independent way, in a
well-calibrated test, avoiding data splitting. This technique applies more
broadly to general permutation-based MMD testing, and includes the use of deep
kernels with features learnt using unsupervised models such as auto-encoders.
We highlight the applicability of our MMD-FUSE test on both synthetic
low-dimensional and real-world high-dimensional data, and compare its
performance in terms of power against current state-of-the-art kernel tests.
- Abstract(参考訳): 本稿では,最大平均離散性(MMD)に基づく2サンプルテストのパワーを最大化する新しい統計法を提案する。
有限集合の場合、これは重み付けされたソフトな最大値によってこれらのカーネルのそれぞれの下で(正規化された)MDD値を組み合わせることに還元される。
指数濃度境界は、null と alternative の下で提案する統計で証明される。
さらに、これらのカーネルをデータ依存だが順列非依存の方法で選択する方法を、適切に調整されたテストで示し、データの分割を避ける。
この手法は、一般的な置換に基づくMDDテストに広く適用され、オートエンコーダのような教師なしモデルを用いて学習した機能を持つディープカーネルの使用を含む。
我々は,合成低次元および実世界の高次元データに対するMDD-FUSEテストの適用性を強調し,その性能を現状のカーネルテストと比較した。
関連論文リスト
- Robust Kernel Hypothesis Testing under Data Corruption [6.430258446597413]
データ破損下での頑健な置換テストを構築するための2つの一般的な方法を提案する。
最小限の条件下での力の一貫性を証明する。
これは、潜在的な敵攻撃を伴う現実世界のアプリケーションに対する仮説テストの実践的な展開に寄与する。
論文 参考訳(メタデータ) (2024-05-30T10:23:16Z) - Boosting the Power of Kernel Two-Sample Tests [4.07125466598411]
最大平均誤差(MMD)に基づくカーネル2サンプルテストは、一般的な距離空間上の2つの分布の違いを検出する最も一般的な方法の1つである。
マハラノビス距離を用いて,複数のカーネル上でMDD推定値を組み合わせることで,カーネルテストのパワーを高める手法を提案する。
論文 参考訳(メタデータ) (2023-02-21T14:14:30Z) - Spectral Regularized Kernel Two-Sample Tests [7.915420897195129]
MMD (maximum mean discrepancy) two-sample test to be optimal to the terms of the separation boundary in the Hellinger distance。
スペクトル正則化に基づくMDD試験の修正を提案し,MMD試験よりも分離境界が小さく,最小限の試験が最適であることを証明した。
その結果,テストしきい値がエレガントに選択されるテストの置換変種が,サンプルの置換によって決定されることがわかった。
論文 参考訳(メタデータ) (2022-12-19T00:42:21Z) - FaDIn: Fast Discretized Inference for Hawkes Processes with General
Parametric Kernels [82.53569355337586]
この研究は、有限なサポートを持つ一般パラメトリックカーネルを用いた時間点プロセス推論の効率的な解を提供する。
脳磁図(MEG)により記録された脳信号からの刺激誘発パターンの発生をモデル化し,その有効性を評価する。
その結果,提案手法により,最先端技術よりもパターン遅延の推定精度が向上することが示唆された。
論文 参考訳(メタデータ) (2022-10-10T12:35:02Z) - Targeted Separation and Convergence with Kernel Discrepancies [61.973643031360254]
カーネルベースの不一致測度は、(i)ターゲットPを他の確率測度から分離するか、(ii)Pへの弱収束を制御する必要がある。
本稿では, (i) と (ii) を保証するのに十分な,必要な新しい条件を導出する。
可分距離空間上のMDDに対して、ボヒナー埋め込み可測度を分離するカーネルを特徴づけ、すべての測度を非有界カーネルと分離するための単純な条件を導入する。
論文 参考訳(メタデータ) (2022-09-26T16:41:16Z) - MMD Aggregated Two-Sample Test [31.116276769013204]
平均最大離散性(MMD)に基づく2つの新しい非パラメトリック2サンプルカーネルテストを提案する。
まず、固定化されたカーネルに対して、置換またはワイルドブートストラップを用いてMDDテストを構築し、テストしきい値を決定するために2つの一般的な数値処理を行う。
本研究では,この実験が非漸近的にレベルを制御し,反復対数項までソボレフ球の最小値を達成することを証明した。
論文 参考訳(メタデータ) (2021-10-28T12:47:49Z) - A Note on Optimizing Distributions using Kernel Mean Embeddings [94.96262888797257]
カーネル平均埋め込みは、その無限次元平均埋め込みによる確率測度を表す。
カーネルが特徴的である場合、カーネルの総和密度を持つ分布は密度が高いことを示す。
有限サンプル設定でそのような分布を最適化するアルゴリズムを提供する。
論文 参考訳(メタデータ) (2021-06-18T08:33:45Z) - Maximum Mean Discrepancy Test is Aware of Adversarial Attacks [122.51040127438324]
最大平均誤差(MMD)テストは、原則として2つのデータセット間の分布誤差を検出できる。
MMD検査は敵の攻撃に気づいていないことが示されている。
論文 参考訳(メタデータ) (2020-10-22T03:42:12Z) - Kernel learning approaches for summarising and combining posterior
similarity matrices [68.8204255655161]
我々は,ベイズクラスタリングモデルに対するMCMCアルゴリズムの出力を要約するための新しいアプローチを提案するために,後部類似性行列(PSM)の概念を構築した。
我々の研究の重要な貢献は、PSMが正の半定値であり、したがって確率的に動機付けられたカーネル行列を定義するのに使用できることである。
論文 参考訳(メタデータ) (2020-09-27T14:16:14Z) - Learning Kernel Tests Without Data Splitting [18.603394415852765]
データ分割なしにハイパーパラメータの学習と全サンプルでのテストを可能にするアプローチを提案する。
我々のアプローチの試験能力は、その分割割合に関係なく、データ分割アプローチよりも経験的に大きい。
論文 参考訳(メタデータ) (2020-06-03T14:07:39Z) - Learning Deep Kernels for Non-Parametric Two-Sample Tests [50.92621794426821]
2組のサンプルが同じ分布から引き出されるかどうかを判定するカーネルベースの2サンプルテストのクラスを提案する。
私たちのテストは、テストパワーを最大化するためにトレーニングされたディープニューラルネットワークによってパラメータ化されたカーネルから構築されます。
論文 参考訳(メタデータ) (2020-02-21T03:54:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。