論文の概要: On Evolvability and Behavior Landscapes in Neuroevolutionary Divergent
Search
- arxiv url: http://arxiv.org/abs/2306.09849v1
- Date: Fri, 16 Jun 2023 13:46:55 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-19 13:40:23.495907
- Title: On Evolvability and Behavior Landscapes in Neuroevolutionary Divergent
Search
- Title(参考訳): 神経進化的発散探索における進化可能性と行動景観について
- Authors: Bruno Ga\v{s}perov, Marko {\DJ}urasevi\'c
- Abstract要約: 進化性(Evolvability)とは、個々の遺伝子型が相互に多様な表現型を持つ子孫を産み出す能力である。
近年の研究では、発散探索法が選択的圧力を暗黙的に生成することで、進化性を促進することが示されている。
本稿では,神経進化的分岐探索と進化可能性の関係について,新しい視点を提供する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Evolvability refers to the ability of an individual genotype (solution) to
produce offspring with mutually diverse phenotypes. Recent research has
demonstrated that divergent search methods, particularly novelty search,
promote evolvability by implicitly creating selective pressure for it. The main
objective of this paper is to provide a novel perspective on the relationship
between neuroevolutionary divergent search and evolvability. In order to
achieve this, several types of walks from the literature on fitness landscape
analysis are first adapted to this context. Subsequently, the interplay between
neuroevolutionary divergent search and evolvability under varying amounts of
evolutionary pressure and under different diversity metrics is investigated. To
this end, experiments are performed on Fetch Pick and Place, a robotic arm
task. Moreover, the performed study in particular sheds light on the structure
of the genotype-phenotype mapping (the behavior landscape). Finally, a novel
definition of evolvability that takes into account the evolvability of
offspring and is appropriate for use with discretized behavior spaces is
proposed, together with a Markov-chain-based estimation method for it.
- Abstract(参考訳): 進化性とは、個々の遺伝子型(溶液)が互いに多様な表現型を持つ子孫を生み出す能力である。
近年の研究では、異なる探索方法、特に新奇な探索が選択的圧力を暗黙的に生成することで進化性を促進することが示されている。
本研究の目的は,神経進化的発散探索と進化可能性の関係に関する新しい視点を提供することである。
これを実現するために、フィットネスランドスケープ分析に関する文献からのいくつかのタイプのウォークをまずこの文脈に適応させる。
その後,様々な進化的圧力下での神経進化的分岐探索と進化可能性の相互作用について検討した。
この目的のために、ロボットアームタスクであるFetch Pick and Placeで実験が行われている。
さらに,遺伝子型・表現型マッピング(行動景観)の構造について,特に検討を行った。
最後に,子孫の進化性を考慮した新規な進化可能性の定義をマルコフ連鎖に基づく推定法とともに提案する。
関連論文リスト
- Hierarchical Conditioning of Diffusion Models Using Tree-of-Life for Studying Species Evolution [19.899467048643363]
階層型埋め込み(HIER-Embeds)で表される系統的知識を持つ拡散モデルを条件付けるフレームワークであるPhylo-Diffusionを紹介する。
また,Phylo-Diffusionの埋め込み空間を摂動する2つの新しい実験を提案する。
私たちの研究は、生成モデルを用いて画像から直接進化的変化を可視化することで、進化生物学の新しい章も開きます。
論文 参考訳(メタデータ) (2024-07-31T21:06:14Z) - Cognitive Evolutionary Learning to Select Feature Interactions for Recommender Systems [59.117526206317116]
Cellはさまざまなタスクやデータに対して,さまざまなモデルに適応的に進化可能であることを示す。
4つの実世界のデータセットの実験では、細胞は最先端のベースラインを大幅に上回っている。
論文 参考訳(メタデータ) (2024-05-29T02:35:23Z) - Seeing Unseen: Discover Novel Biomedical Concepts via
Geometry-Constrained Probabilistic Modeling [53.7117640028211]
同定された問題を解決するために,幾何制約付き確率的モデリング処理を提案する。
構成された埋め込み空間のレイアウトに適切な制約を課すために、重要な幾何学的性質のスイートを組み込む。
スペクトルグラフ理論法は、潜在的な新規クラスの数を推定するために考案された。
論文 参考訳(メタデータ) (2024-03-02T00:56:05Z) - Coevolution of Neural Architectures and Features for Stock Market
Forecasting: A Multi-objective Decision Perspective [0.0]
本稿では、意思決定者によるさらなる選択のために、非支配的ニューラルネットワークモデルの集合を同定するための新しいアプローチを提案する。
ニューラルネットワークの特徴とトポロジを同時に選択するための新しい共進化手法を提案する。
その結果、NASDAQ指数は、近日・近日・近日・近日・近日・近日・遠日・近日・近日・近日・近日・近日・近日・近日・近日・近日・近日・近日・近日・近日・近日・近日・近日・近日・近日・近日・近日・近日・近日・近日・近日・近日・近日・近日・近日・近日・近日・近日・近日・近日・近日・近日・近日・近日・
論文 参考訳(メタデータ) (2023-11-23T15:12:30Z) - Phylogeny-informed fitness estimation [58.720142291102135]
本研究では, 住民の健康評価を推定するために, フィロジェニーを利用した適合度推定手法を提案する。
以上の結果から, 植物性インフォームドフィットネス推定は, ダウンサンプドレキシケースの欠点を軽減することが示唆された。
この研究は、ランタイム系統解析を利用して進化アルゴリズムを改善するための最初のステップとなる。
論文 参考訳(メタデータ) (2023-06-06T19:05:01Z) - Unsupervised ensemble-based phenotyping helps enhance the
discoverability of genes related to heart morphology [57.25098075813054]
我々はUn Phenotype Ensemblesという名の遺伝子発見のための新しいフレームワークを提案する。
教師なしの方法で学習された表現型のセットをプールすることで、冗長だが非常に表現性の高い表現を構築する。
これらの表現型は、(GWAS)を介して分析され、高い自信と安定した関連のみを保持する。
論文 参考訳(メタデータ) (2023-01-07T18:36:44Z) - Heritability in Morphological Robot Evolution [2.7402733069181]
遺伝性の生物学的概念を導入し,遺伝子型変異による表現型変異の量を把握する。
解析では,2つの異なるエンコーディングから進化した第1世代のロボットの遺伝性を測定した。
遺伝性は遺伝子型と表現型との関係をよりよく理解するための有用なツールであることを示す。
論文 参考訳(メタデータ) (2021-10-21T14:58:17Z) - Epigenetic evolution of deep convolutional models [81.21462458089142]
我々は、より深い畳み込みモデルを進化させるために、これまで提案されていた神経進化の枠組みを構築した。
異なる形状と大きさのカーネルを同一層内に共存させる畳み込み層配置を提案する。
提案したレイアウトにより、畳み込み層内の個々のカーネルのサイズと形状を、対応する新しい突然変異演算子で進化させることができる。
論文 参考訳(メタデータ) (2021-04-12T12:45:16Z) - Complexity-based speciation and genotype representation for
neuroevolution [81.21462458089142]
本稿では、進化するネットワークを隠されたニューロンの数に基づいて種に分類する神経進化の種分化原理を提案する。
提案された種分化原理は、種および生態系全体における多様性の促進と保存を目的として設計されたいくつかの技術で採用されている。
論文 参考訳(メタデータ) (2020-10-11T06:26:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。