Generative Adversarial Model-Based Optimization via Source Critic Regularization
- URL: http://arxiv.org/abs/2402.06532v2
- Date: Wed, 25 Sep 2024 18:07:41 GMT
- Title: Generative Adversarial Model-Based Optimization via Source Critic Regularization
- Authors: Michael S. Yao, Yimeng Zeng, Hamsa Bastani, Jacob Gardner, James C. Gee, Osbert Bastani,
- Abstract summary: We propose generative adversarial model-based optimization using adaptive source critic regularization (aSCR)
ASCR constrains the optimization trajectory to regions of the design space where the surrogate function is reliable.
We show how leveraging aSCR with standard Bayesian optimization outperforms existing methods on a suite of offline generative design tasks.
- Score: 25.19579059511105
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Offline model-based optimization seeks to optimize against a learned surrogate model without querying the true oracle objective function during optimization. Such tasks are commonly encountered in protein design, robotics, and clinical medicine where evaluating the oracle function is prohibitively expensive. However, inaccurate surrogate model predictions are frequently encountered along offline optimization trajectories. To address this limitation, we propose generative adversarial model-based optimization using adaptive source critic regularization (aSCR) -- a task- and optimizer- agnostic framework for constraining the optimization trajectory to regions of the design space where the surrogate function is reliable. We propose a computationally tractable algorithm to dynamically adjust the strength of this constraint, and show how leveraging aSCR with standard Bayesian optimization outperforms existing methods on a suite of offline generative design tasks. Our code is available at https://github.com/michael-s-yao/gabo
Related papers
- Towards Efficient Exact Optimization of Language Model Alignment [93.39181634597877]
Direct preference optimization (DPO) was proposed to directly optimize the policy from preference data.
We show that DPO derived based on the optimal solution of problem leads to a compromised mean-seeking approximation of the optimal solution in practice.
We propose efficient exact optimization (EXO) of the alignment objective.
arXiv Detail & Related papers (2024-02-01T18:51:54Z) - Functional Graphical Models: Structure Enables Offline Data-Driven Optimization [111.28605744661638]
We show how structure can enable sample-efficient data-driven optimization.
We also present a data-driven optimization algorithm that infers the FGM structure itself.
arXiv Detail & Related papers (2024-01-08T22:33:14Z) - Pseudo-Bayesian Optimization [7.556071491014536]
We study an axiomatic framework that elicits the minimal requirements to guarantee black-box optimization convergence.
We show how using simple local regression, and a suitable "randomized prior" construction to quantify uncertainty, not only guarantees convergence but also consistently outperforms state-of-the-art benchmarks.
arXiv Detail & Related papers (2023-10-15T07:55:28Z) - ROMO: Retrieval-enhanced Offline Model-based Optimization [14.277672372460785]
Data-driven black-box model-based optimization (MBO) problems arise in a number of practical application scenarios.
We propose retrieval-enhanced offline model-based optimization (ROMO)
ROMO is simple to implement and outperforms state-of-the-art approaches in the CoMBO setting.
arXiv Detail & Related papers (2023-10-11T15:04:33Z) - Optimizer's Information Criterion: Dissecting and Correcting Bias in Data-Driven Optimization [16.57676001669012]
In data-driven optimization, the sample performance of the obtained decision typically incurs an optimistic bias against the true performance.
Common techniques to correct this bias, such as cross-validation, require repeatedly solving additional optimization problems and are therefore expensive.
We develop a general bias correction approach that directly approximates the first-order bias and does not require solving any additional optimization problems.
arXiv Detail & Related papers (2023-06-16T07:07:58Z) - Evolutionary Solution Adaption for Multi-Objective Metal Cutting Process
Optimization [59.45414406974091]
We introduce a framework for system flexibility that allows us to study the ability of an algorithm to transfer solutions from previous optimization tasks.
We study the flexibility of NSGA-II, which we extend by two variants: 1) varying goals, that optimize solutions for two tasks simultaneously to obtain in-between source solutions expected to be more adaptable, and 2) active-inactive genotype, that accommodates different possibilities that can be activated or deactivated.
Results show that adaption with standard NSGA-II greatly reduces the number of evaluations required for optimization to a target goal, while the proposed variants further improve the adaption costs.
arXiv Detail & Related papers (2023-05-31T12:07:50Z) - An Empirical Evaluation of Zeroth-Order Optimization Methods on
AI-driven Molecule Optimization [78.36413169647408]
We study the effectiveness of various ZO optimization methods for optimizing molecular objectives.
We show the advantages of ZO sign-based gradient descent (ZO-signGD)
We demonstrate the potential effectiveness of ZO optimization methods on widely used benchmark tasks from the Guacamol suite.
arXiv Detail & Related papers (2022-10-27T01:58:10Z) - Combining Genetic Programming and Particle Swarm Optimization to
Simplify Rugged Landscapes Exploration [7.25130576615102]
We propose a novel method for constructing a smooth surrogate model of the original function.
The proposed algorithm, called the GP-FST-PSO Surrogate Model, achieves satisfactory results in both the search for the global optimum and the production of a visual approximation of the original benchmark function.
arXiv Detail & Related papers (2022-06-07T12:55:04Z) - Data-driven evolutionary algorithm for oil reservoir well-placement and
control optimization [3.012067935276772]
Generalized data-driven evolutionary algorithm (GDDE) is proposed to reduce the number of simulation runs on well-placement and control optimization problems.
Probabilistic neural network (PNN) is adopted as the classifier to select informative and promising candidates.
arXiv Detail & Related papers (2022-06-07T09:07:49Z) - Conservative Objective Models for Effective Offline Model-Based
Optimization [78.19085445065845]
Computational design problems arise in a number of settings, from synthetic biology to computer architectures.
We propose a method that learns a model of the objective function that lower bounds the actual value of the ground-truth objective on out-of-distribution inputs.
COMs are simple to implement and outperform a number of existing methods on a wide range of MBO problems.
arXiv Detail & Related papers (2021-07-14T17:55:28Z) - Bayesian Optimization for Selecting Efficient Machine Learning Models [53.202224677485525]
We present a unified Bayesian Optimization framework for jointly optimizing models for both prediction effectiveness and training efficiency.
Experiments on model selection for recommendation tasks indicate models selected this way significantly improves model training efficiency.
arXiv Detail & Related papers (2020-08-02T02:56:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.