Understanding Contrastive Learning Through the Lens of Margins
- URL: http://arxiv.org/abs/2306.11526v1
- Date: Tue, 20 Jun 2023 13:28:27 GMT
- Title: Understanding Contrastive Learning Through the Lens of Margins
- Authors: Daniel Rho, TaeSoo Kim, Sooill Park, Jaehyun Park, JaeHan Park
- Abstract summary: Self-supervised learning, or SSL, holds the key to expanding the usage of machine learning in real-world tasks.
We use margins as a stepping stone for understanding how contrastive learning works at a deeper level.
- Score: 9.443122526245562
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Self-supervised learning, or SSL, holds the key to expanding the usage of
machine learning in real-world tasks by alleviating heavy human supervision.
Contrastive learning and its varieties have been SSL strategies in various
fields. We use margins as a stepping stone for understanding how contrastive
learning works at a deeper level and providing potential directions to improve
representation learning. Through gradient analysis, we found that margins scale
gradients in three different ways: emphasizing positive samples, de-emphasizing
positive samples when angles of positive samples are wide, and attenuating the
diminishing gradients as the estimated probability approaches the target
probability. We separately analyze each and provide possible directions for
improving SSL frameworks. Our experimental results demonstrate that these
properties can contribute to acquiring better representations, which can
enhance performance in both seen and unseen datasets.
Related papers
- Using Self-supervised Learning Can Improve Model Fairness [10.028637666224093]
Self-supervised learning (SSL) has become the de facto training paradigm of large models.
This study explores the impact of pre-training and fine-tuning strategies on fairness.
We introduce a fairness assessment framework for SSL, comprising five stages: defining dataset requirements, pre-training, fine-tuning with gradual unfreezing, assessing representation similarity conditioned on demographics, and establishing domain-specific evaluation processes.
arXiv Detail & Related papers (2024-06-04T14:38:30Z) - The Common Stability Mechanism behind most Self-Supervised Learning
Approaches [64.40701218561921]
We provide a framework to explain the stability mechanism of different self-supervised learning techniques.
We discuss the working mechanism of contrastive techniques like SimCLR, non-contrastive techniques like BYOL, SWAV, SimSiam, Barlow Twins, and DINO.
We formulate different hypotheses and test them using the Imagenet100 dataset.
arXiv Detail & Related papers (2024-02-22T20:36:24Z) - C-ICL: Contrastive In-context Learning for Information Extraction [54.39470114243744]
c-ICL is a novel few-shot technique that leverages both correct and incorrect sample constructions to create in-context learning demonstrations.
Our experiments on various datasets indicate that c-ICL outperforms previous few-shot in-context learning methods.
arXiv Detail & Related papers (2024-02-17T11:28:08Z) - Semantic Positive Pairs for Enhancing Visual Representation Learning of Instance Discrimination methods [4.680881326162484]
Self-supervised learning algorithms (SSL) based on instance discrimination have shown promising results.
We propose an approach to identify those images with similar semantic content and treat them as positive instances.
We run experiments on three benchmark datasets: ImageNet, STL-10 and CIFAR-10 with different instance discrimination SSL approaches.
arXiv Detail & Related papers (2023-06-28T11:47:08Z) - Learning Common Rationale to Improve Self-Supervised Representation for
Fine-Grained Visual Recognition Problems [61.11799513362704]
We propose learning an additional screening mechanism to identify discriminative clues commonly seen across instances and classes.
We show that a common rationale detector can be learned by simply exploiting the GradCAM induced from the SSL objective.
arXiv Detail & Related papers (2023-03-03T02:07:40Z) - ArCL: Enhancing Contrastive Learning with Augmentation-Robust
Representations [30.745749133759304]
We develop a theoretical framework to analyze the transferability of self-supervised contrastive learning.
We show that contrastive learning fails to learn domain-invariant features, which limits its transferability.
Based on these theoretical insights, we propose a novel method called Augmentation-robust Contrastive Learning (ArCL)
arXiv Detail & Related papers (2023-03-02T09:26:20Z) - On Higher Adversarial Susceptibility of Contrastive Self-Supervised
Learning [104.00264962878956]
Contrastive self-supervised learning (CSL) has managed to match or surpass the performance of supervised learning in image and video classification.
It is still largely unknown if the nature of the representation induced by the two learning paradigms is similar.
We identify the uniform distribution of data representation over a unit hypersphere in the CSL representation space as the key contributor to this phenomenon.
We devise strategies that are simple, yet effective in improving model robustness with CSL training.
arXiv Detail & Related papers (2022-07-22T03:49:50Z) - Learning Where to Learn in Cross-View Self-Supervised Learning [54.14989750044489]
Self-supervised learning (SSL) has made enormous progress and largely narrowed the gap with supervised ones.
Current methods simply adopt uniform aggregation of pixels for embedding.
We present a new approach, Learning Where to Learn (LEWEL), to adaptively aggregate spatial information of features.
arXiv Detail & Related papers (2022-03-28T17:02:42Z) - Trash to Treasure: Harvesting OOD Data with Cross-Modal Matching for
Open-Set Semi-Supervised Learning [101.28281124670647]
Open-set semi-supervised learning (open-set SSL) investigates a challenging but practical scenario where out-of-distribution (OOD) samples are contained in the unlabeled data.
We propose a novel training mechanism that could effectively exploit the presence of OOD data for enhanced feature learning.
Our approach substantially lifts the performance on open-set SSL and outperforms the state-of-the-art by a large margin.
arXiv Detail & Related papers (2021-08-12T09:14:44Z) - Semi-Discriminative Representation Loss for Online Continual Learning [16.414031859647874]
gradient-based approaches have been developed to make more efficient use of compact episodic memory.
We propose a simple method -- Semi-Discriminative Representation Loss (SDRL) -- for continual learning.
arXiv Detail & Related papers (2020-06-19T17:13:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.