論文の概要: Prior-itizing Privacy: A Bayesian Approach to Setting the Privacy Budget in Differential Privacy
- arxiv url: http://arxiv.org/abs/2306.13214v2
- Date: Wed, 22 May 2024 16:10:54 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-26 21:12:42.625875
- Title: Prior-itizing Privacy: A Bayesian Approach to Setting the Privacy Budget in Differential Privacy
- Title(参考訳): プライバシを優先する - 差別的プライバシにプライバシ予算を設定するためのベイズ的アプローチ
- Authors: Zeki Kazan, Jerome P. Reiter,
- Abstract要約: 開示のベイズ的後部確率との関係に基づいて$varepsilon$を設定するためのフレームワークを提供する。
データリリースの責任者は、さまざまなレベルの事前リスクで、どれくらいの後方リスクを受け入れるかを決定する。
- 参考スコア(独自算出の注目度): 0.3683202928838613
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: When releasing outputs from confidential data, agencies need to balance the analytical usefulness of the released data with the obligation to protect data subjects' confidentiality. For releases satisfying differential privacy, this balance is reflected by the privacy budget, $\varepsilon$. We provide a framework for setting $\varepsilon$ based on its relationship with Bayesian posterior probabilities of disclosure. The agency responsible for the data release decides how much posterior risk it is willing to accept at various levels of prior risk, which implies a unique $\varepsilon$. Agencies can evaluate different risk profiles to determine one that leads to an acceptable trade-off in risk and utility.
- Abstract(参考訳): 機密データからのアウトプットを解放する場合、機関は、公表されたデータの分析的有用性と、データ対象データの機密性を保護する義務のバランスを取る必要がある。
差分プライバシーを満たすリリースの場合、このバランスはプライバシー予算である$\varepsilon$に反映される。
開示のベイズ的後部確率との関係に基づき、$\varepsilon$を設定するためのフレームワークを提供する。
データリリースの責任者は、さまざまなレベルの事前リスクを受理する意思のある後方リスクを決定するため、ユニークな$\varepsilon$が与えられる。
企業は異なるリスクプロファイルを評価して、許容できるリスクとユーティリティのトレードオフにつながるものを決定することができます。
関連論文リスト
- Calibrating Practical Privacy Risks for Differentially Private Machine Learning [5.363664265121231]
モデルトレーニングにおいて、より柔軟なプライバシ予算設定を可能にするために、攻撃の成功率を下げるアプローチについて検討する。
プライバシに敏感な機能を選択的に抑制することで、アプリケーション固有のデータユーティリティを損なうことなく、低いASR値を達成できることがわかりました。
論文 参考訳(メタデータ) (2024-10-30T03:52:01Z) - Privacy Amplification for the Gaussian Mechanism via Bounded Support [64.86780616066575]
インスタンスごとの差分プライバシー(pDP)やフィッシャー情報損失(FIL)といったデータ依存のプライバシ会計フレームワークは、固定されたトレーニングデータセット内の個人に対してきめ細かいプライバシー保証を提供する。
本稿では,データ依存会計下でのプライバシ保証を向上することを示すとともに,バウンドサポートによるガウス機構の簡単な修正を提案する。
論文 参考訳(メタデータ) (2024-03-07T21:22:07Z) - To share or not to share: What risks would laypeople accept to give sensitive data to differentially-private NLP systems? [14.586789605230672]
私たちは、$varepsilon$の値を決定することは、研究者やシステム開発者の手だけにすべきではない、と論じています。
我々は,不確実な意思決定状況における人々の行動を研究するために,行動実験(311名)を実施している。
論文 参考訳(メタデータ) (2023-07-13T12:06:48Z) - A Randomized Approach for Tight Privacy Accounting [63.67296945525791]
推定検証リリース(EVR)と呼ばれる新しい差分プライバシーパラダイムを提案する。
EVRパラダイムは、まずメカニズムのプライバシパラメータを推定し、その保証を満たすかどうかを確認し、最後にクエリ出力を解放する。
我々の実証的な評価は、新たに提案されたEVRパラダイムが、プライバシ保護機械学習のユーティリティプライバシトレードオフを改善することを示している。
論文 参考訳(メタデータ) (2023-04-17T00:38:01Z) - What Are the Chances? Explaining the Epsilon Parameter in Differential
Privacy [17.201862983773662]
差分プライバシー(英: Differential privacy、DP)とは、政府や産業にまたがる数学的プライバシーの概念である。
本研究では,エンドユーザに確率的DP保証を伝達する3つの手法を開発した。
確率に基づく説明法は出力に基づく方法よりも効果的であることがわかった。
論文 参考訳(メタデータ) (2023-03-01T18:53:25Z) - Breaking the Communication-Privacy-Accuracy Tradeoff with
$f$-Differential Privacy [51.11280118806893]
サーバが複数のユーザの協調的なデータ分析を,プライバシの懸念と限られた通信能力で調整する,フェデレートされたデータ分析問題を考える。
有限出力空間を有する離散値機構の局所的差分プライバシー保証を$f$-differential privacy (DP) レンズを用いて検討する。
より具体的には、様々な離散的評価機構の厳密な$f$-DP保証を導出することにより、既存の文献を前進させる。
論文 参考訳(メタデータ) (2023-02-19T16:58:53Z) - Analyzing Privacy Leakage in Machine Learning via Multiple Hypothesis
Testing: A Lesson From Fano [83.5933307263932]
本研究では,離散データに対するデータ再構成攻撃について検討し,仮説テストの枠組みの下で解析する。
基礎となるプライベートデータが$M$のセットから値を取ると、ターゲットのプライバシパラメータ$epsilon$が$O(log M)$になる。
論文 参考訳(メタデータ) (2022-10-24T23:50:12Z) - Individual Privacy Accounting for Differentially Private Stochastic Gradient Descent [69.14164921515949]
DP-SGDで訓練されたモデルをリリースする際の個々の事例に対するプライバシー保証を特徴付ける。
ほとんどの例では、最悪のケースよりも強力なプライバシー保証を享受しています。
これは、モデルユーティリティの観点からは守られないグループが同時に、より弱いプライバシー保証を経験することを意味する。
論文 参考訳(メタデータ) (2022-06-06T13:49:37Z) - Privacy Amplification via Shuffling for Linear Contextual Bandits [51.94904361874446]
ディファレンシャルプライバシ(DP)を用いた文脈線形バンディット問題について検討する。
プライバシのシャッフルモデルを利用して,JDP と LDP のプライバシ/ユーティリティトレードオフを実現することができることを示す。
以上の結果から,ローカルプライバシを保ちながらシャッフルモデルを活用することで,JDPとDPのトレードオフを得ることが可能であることが示唆された。
論文 参考訳(メタデータ) (2021-12-11T15:23:28Z) - Differential Privacy at Risk: Bridging Randomness and Privacy Budget [5.393465689287103]
我々は、ノイズ分布によって引き起こされる明示的ランダム性や、データ生成によって引き起こされる暗黙的ランダム性など、ランダム性源の役割を分析する。
プライバシ保存機構の確率的校正であるリスクのあるプライバシを提案する。
コスト最適プライバシを用いたコンポジションは,従来の高度なコンポジションよりも強力なプライバシ保証を提供することを示す。
論文 参考訳(メタデータ) (2020-03-02T15:44:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。