論文の概要: When Foundation Model Meets Federated Learning: Motivations, Challenges,
and Future Directions
- arxiv url: http://arxiv.org/abs/2306.15546v1
- Date: Tue, 27 Jun 2023 15:15:55 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-28 13:03:17.469596
- Title: When Foundation Model Meets Federated Learning: Motivations, Challenges,
and Future Directions
- Title(参考訳): 基礎モデルが連合学習を満たすとき - モチベーション,課題,今後の方向性
- Authors: Weiming Zhuang, Chen Chen, Lingjuan Lyu
- Abstract要約: ファンデーションモデル(FM)とフェデレートラーニング(FL)の交差は相互に利益をもたらす。
FLは、FMデータの可用性を拡張し、計算共有、トレーニングプロセスの分散、FL参加者の負担軽減を可能にする。
一方、FMは、その巨大さ、事前訓練された知識、および例外的な性能により、FLの堅牢な出発点として機能する。
- 参考スコア(独自算出の注目度): 22.070773339115004
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The intersection of the Foundation Model (FM) and Federated Learning (FL)
provides mutual benefits, presents a unique opportunity to unlock new
possibilities in AI research, and address critical challenges in AI and
real-world applications. FL expands the availability of data for FMs and
enables computation sharing, distributing the training process and reducing the
burden on FL participants. It promotes collaborative FM development,
democratizing the process and fostering inclusivity and innovation. On the
other hand, FM, with its enormous size, pre-trained knowledge, and exceptional
performance, serves as a robust starting point for FL, facilitating faster
convergence and better performance under non-iid data. Additionally, leveraging
FM to generate synthetic data enriches data diversity, reduces overfitting, and
preserves privacy. By examining the interplay between FL and FM, this paper
aims to deepen the understanding of their synergistic relationship,
highlighting the motivations, challenges, and future directions. Through an
exploration of the challenges faced by FL and FM individually and their
interconnections, we aim to inspire future research directions that can further
enhance both fields, driving advancements and propelling the development of
privacy-preserving and scalable AI systems.
- Abstract(参考訳): ファンデーションモデル(FM)とフェデレーテッドラーニング(FL)の交差点は、相互利益を提供し、AI研究における新たな可能性を開くユニークな機会を提供し、AIと現実世界のアプリケーションにおける重要な課題に対処する。
FLは、FMデータの可用性を拡張し、計算共有、トレーニングプロセスの分散、FL参加者の負担軽減を可能にする。
共同FM開発を促進し、プロセスを民主化し、傾倒と革新を促進する。
一方、FMは、その巨大なサイズ、事前訓練された知識、および例外的な性能を持つため、FLの堅牢な出発点として機能し、非IDデータの下での高速な収束とより良い性能を実現する。
さらに、FMを利用して合成データを生成し、データの多様性を高め、過度な適合を減らし、プライバシを保存する。
flとfmの相互作用を考察し,それらの相乗的関係の理解を深め,モチベーション,課題,今後の方向性を強調する。
FLとFMが個別に直面する課題とその相互接続の探索を通じて、我々は、両方の分野をさらに強化し、進歩を促進し、プライバシー保護とスケーラブルなAIシステムの開発を促進する将来の研究方向を刺激することを目指している。
関連論文リスト
- Federated Large Language Models: Current Progress and Future Directions [63.68614548512534]
本稿では,LLM(FedLLM)のフェデレーション学習について調査し,最近の進歩と今後の方向性を明らかにする。
ファインチューニングと迅速な学習という2つの重要な側面に注目し、既存の作業と関連する研究課題について議論する。
論文 参考訳(メタデータ) (2024-09-24T04:14:33Z) - Synergizing Foundation Models and Federated Learning: A Survey [23.416321895575507]
本稿では,フェデレートラーニング(FL)とファンデーションモデル(FM)の融合の可能性と課題について論じる。
FLは、さまざまな参加者からのデータ可用性の障壁を破る、共同学習パラダイムである。
プライバシを保護しながら、分散データセットを使用して、幅広いドメイン固有のタスクにFMをカスタマイズし、適応する有望なソリューションを提供する。
論文 参考訳(メタデータ) (2024-06-18T17:58:09Z) - Advances and Open Challenges in Federated Foundation Models [34.37509703688661]
ファウンデーションモデル(FM)とフェデレートラーニング(FL)の統合は、人工知能(AI)における変革的パラダイムを提示する
本稿では,フェデレーション・ファンデーション・モデル(FedFM)の新興分野に関する包括的調査を行う。
論文 参考訳(メタデータ) (2024-04-23T09:44:58Z) - A Survey on Efficient Federated Learning Methods for Foundation Model Training [62.473245910234304]
フェデレーテッド・ラーニング(FL)は、多数のクライアントにわたるプライバシー保護協調トレーニングを促進するための確立した技術となっている。
Foundation Models (FM)の後、多くのディープラーニングアプリケーションでは現実が異なる。
FLアプリケーションに対するパラメータ効率細調整(PEFT)の利点と欠点について論じる。
論文 参考訳(メタデータ) (2024-01-09T10:22:23Z) - Federated Learning for 6G: Paradigms, Taxonomy, Recent Advances and
Insights [52.024964564408]
本稿では,プロトコルスタックのすべてのレベルにわたってフェデレートラーニングを実装することの付加価値について検討する。
それは重要なFLアプリケーションを示し、ホットトピックに対処し、将来の研究と開発のための貴重な洞察と明示的なガイダンスを提供します。
我々の結論は、FLと将来の6Gの相乗効果を活用しつつ、FLがワイヤレス産業に革命をもたらす可能性を浮き彫りにすることを目的としています。
論文 参考訳(メタデータ) (2023-12-07T20:39:57Z) - The Role of Federated Learning in a Wireless World with Foundation Models [59.8129893837421]
ファンデーションモデル(FM)は汎用人工知能(AI)モデルである。
現在、FMと連邦学習(FL)の相互作用の探索はまだ初期段階にある。
本稿では、FMが無線ネットワークよりもFLに適した範囲について検討し、その研究課題と機会について概観する。
論文 参考訳(メタデータ) (2023-10-06T04:13:10Z) - Deep Equilibrium Models Meet Federated Learning [71.57324258813675]
本研究では,従来の深層学習ネットワークの代わりにDeep Equilibrium(DEQ)モデルを用いて,フェデレートラーニング(FL)問題について検討する。
我々は、DECモデルをフェデレート学習フレームワークに組み込むことで、FLのいくつかのオープンな問題に自然に対処できると主張している。
我々の知る限りでは、この研究は、DECモデルとフェデレーションラーニングの関連性を確立する最初のものである。
論文 参考訳(メタデータ) (2023-05-29T22:51:40Z) - Federated Foundation Models: Privacy-Preserving and Collaborative Learning for Large Models [8.184714897613166]
我々は、FMとFederated Learning(FL)の利点を組み合わせたFFM(Federated Foundation Models)パラダイムを提案する。
我々は,FMの寿命にFLを組み込むことの潜在的なメリットと課題について論じ,事前学習,微調整,応用について論じる。
エッジでの計算能力の増大は、データソースに近い新たに生成されたプライベートデータを用いてFMを最適化する可能性を解き放つ可能性があるため、FFMにおける連続的・長期学習の可能性を探る。
論文 参考訳(メタデータ) (2023-05-19T03:51:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。